Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Основные теоремы теории колебаний

Основные теоремы теории колебаний  [c.290]

ОСНОВНЫЕ ТЕОРЕМЫ ТЕОРИИ КОЛЕБАНИЙ  [c.291]

ОСНОВНЫЕ ТЕОРЕМЫ ТЕОРИИ КОЛЕБАНИИ  [c.293]

Заметим, что здесь также можно доказать основные теоремы теории колебания, подобно тому как это было сделано в главе VII, и на их основе явно выписать условия разрешимости всех рассматриваемых внутренних задач колебания в резонансном случае (см. гл. VII, 2, п. 4).  [c.439]

Доказательства первых двух теорем связано с введением индекса Пуанкаре (АндрОнов и др., 1959). Доказательство последней теоремы основано на том факте, что фазовые траектории не могут пересекаться. Рис. 7 иллюстрирует это положение. Кривая, пересекающая все фазовые траектории и не касающаяся их, называется Кривой без контакта. На рис. 7 окружность R — цикл без контакта. Обнаружение предельных циклов это — основная задача в теории колебаний. Однако не существует общих аналитических методов для ее решения. Следует отметить, что если при исследовании особых точек системы обнаруживаются центры, которые нри изменении параметров превращаются в неустойчивые фокусы, то вероятность существования в этой системе предельных циклов весьма велика.  [c.39]


Задачи колебания. Перенесение методов приближенного решения, которые выше применялись к задачам статики, на задачи теории колебания не требует никаких принципиальных дополнений. Достаточно вместо матрицы Кельвина теперь рассматривать матрицу Купрадзе Г (х — у, со) (см. гл.II) и иметь в виду, что параметр со должен быть отличен от частот собственных колебаний исследуемой задачи. В главе VII было показано, что в этом случае имеют место основные теоремы существования и единственности, вместе е формулами представлений регулярного решения но этого, как мы видели, достаточно для применения описанных способов приближенного решения. Что касается внешних задач, то в этом случае, как было показано в главе VII, теоремы существования и единственности, при условии излучения, имеют место для любых значений параметра со и, следовательно, приближенные методы всегда применимы.  [c.527]

В 3.05 приводятся основные теоремы Ляпунова. Эти выдающиеся результаты послужили источником для огромного количества работ по качественной теории дифференциальных уравнений, теории нелинейных колебаний, аналитической и качественной небесной механике. Впервые они были опубликованы в докторской диссертации А. М. Ляпунова [7]. Укажем также на издания [8], [32], [71—73], содержащие подробное изложение как основных теорем Ляпунова, так и результатов многих его последователей.  [c.831]

Теория устойчивости и колебаний таких систем весьма сложна, и в ней имеется ряд не до конца разрешенных вопросов. В данной главе приведены постановка задачи, различные формы уравнений движения, их первые интегралы, рассмотрены простейшие случаи движения. Указаны вошедшие в инженерную практику алгоритмы расчета малых колебаний системы. Даны основные определения устойчивости движения систем твердых тел с полостями, частично или целиком заполненными жидкостью, соответствующие теоремы прямого метода Ляпунова, рассмотрены примеры.  [c.280]

Прежде всего рассматривается задача о движении материальной точки, находящейся под действием совокупности сил. Формулируются законы Ньютона, выводятся дифференциальные уравнения движения точки. Особо отмечается случай, когда точка находится в равновесии (статика точки). Далее формулируются основные задачи динамики точки и рассматриваются примеры (например, задача о колебаниях точки). Здесь же доказывается теорема об изменении кинетической энергии точки и подробно изучается понятие работы силы и теория потенциального силового поля.  [c.74]


Доказать теоремы единственности для основных гранично-контактных задач уравне ния установившихся колебаний моментной теории упругости.  [c.122]

Постановка вопроса, В третьей главе были доказаны теоремы единственности решения основных задач (задачи статики, колебания и динамики) теории упругости, а в настоящей главе были исследованы и вопросы существования решений задач статики. Вопросам существования решений задач колебания и динамики будут посвящены следующие главы.  [c.275]

В этой главе рассмотрены различные основные и смешанные граничные задачи статики и-гармонических колебаний классической теории упругости для конечных и бесконечных областей, ограниченных несколькими замкнутыми поверхностями. Построены соответствующие тензоры Грина и доказаны теоремы существования и единственности решений указанных задач.  [c.422]

Часто отмечалось для частных случаев бегущих волн, что потенциальная и кинетическая энергии равны. Но я не могу вспомнить ни одного общего исследования по этому вопросу. Эта теорема обычно несправедлива для отдельных частей среды ), и ее следует понимать как относящуюся либо к целому числу длин волн, либо к области пространства, настолько значительной, что можно не учитывать остающиеся дробные части волн. В качестве хорошего примера, позволяющего проникнуть в сущность вопроса, приведу случай равномерно растянутой круглой мембраны Теория звука, 200), колеблющейся с данным числом узловых окружностей и диаметров. Основные типы колебаний не определяются полностью вследствие симметрии, так как любой диаметр может быть  [c.498]

ОСНОВНАЯ ТЕОРЕМА ЗАЦЕПЛЕНИЯ — положение теории зубчатого. зацепления, характеризующее взаимосвязь соотношения скоростей взаимодействующих звеньев и их геометрии. Получение определенного соотношения угловых скоростей звеньев (передаточного отношения) является одним ИЗ основных функциональных качеств зубчатой передачи. Чаще всего это соотношение должно быть постоянным, независимым от врёмени. Если это требование не выполняется, то колебания угловой скорости одного из колес вызывает динамические нагрузки в зацеплении, удары, вибрации элементов передачи и шум. Постоянство соотношения скоростей обеспечивается выбором формы колес и зубьев. Де формации элементов передачи и погрешности изготовления нарушают правильность зацепления и приводят к колебаниям угловой скорости колес.  [c.212]

Наиболее существенные отличительные особенности рецензируемого пособия 1) полнее, чем в имеющейся учебной литературе, освещены мировоззренческие вопросы в теоретической механике 2) введен ряд новых разделов в соответствии с тенденциями развития научно-техни-ческого прогресса, например, однородные координаты, применяемые при описании роботов-манипуляторов. что потребовало существенно перестроить раздел кинематики твердого тела основные теоремы динамики изложены не только в неподвижных, но и в подвижных (неинерциальных) системах координат в разделе Синтез движения рассмотрены вопросы сложения не только скоростей, но и ускорений. При этом получен ряд новых результатов сравнение механических измерителей углов поворота и угловых скоростей твердых тел основы виброзащиты и виброизоляции, динамические поглотители колебаний основы теории нелинейных колебаний, включающей изложение основ методов фазовой плоскости, метода малого параметра, асимптотических методов, метода ускорения 3) в методических находках, позволивших углубить содержание курса и уменьшить его объем впервые обращено внимание на то, что условия динамической уравновешенности ротора и условия отсутствия динамических реакций в опорах твердого тела при ударе — это условия осуществления свободного плоского движения твердого тела полнее и глубже развиты аналогии между статикой, кинематикой и динамикой полнее изложены электромеханические аналогии и показана эффективность применения уравнений Лагранжа-Максвелла, для составления уравнений контурных токов сложных электрических цепей получение теоремы об изменении кинетической энергии для твердого тела из соотношения между основными динамическими величинами и многие другие.  [c.121]


Опыт научной работы членов кафедры и их участие в научно-технической помощи организациям промышленности, выступления перед научно-технической обш,ественностью (с докладами, а также в печати) привели кафедру к выводу о необходимости некоторой модернизации программы основного курса. Начиная с 1959/60 учебного года члены кафедры вели преподавание курса теоретической механики по новой программе. В курс были введены следующие главы Кинематика управляемых движений точки Теория эллиптических траекторий в центральном поле тяготения Земли Вариационный принцип Гамильтона Общая теория малых колебаний с д-степенями свободы Общие теоремы механики тел пере менной массы .  [c.228]

В этой главе доказаны теоремы единственности для основных граничрых и начально-граничных задач классической теории упругости, микрополярной упругости и термоупругости. Рассматриваются задачи для внутренних и внешних (бесконечных) областей в случае статики, гармонических колебаний и общей динамики.  [c.85]

В дополнении даны основные уравнения динамической теории упругости, кото]рые использованы в основном тексте монографии. Приведены уравнения движения в перемещениях, сформулированы граничные и начальные условия. Представлено решение в виде скалярного и векторного потенциала. О юрмулирован1 вариационные принципы динамической теории упругости и теорема взаимностн, а также приведена формула Сомилианы. Рассмотрены гармонические колебания  [c.7]

Далее оказывается, что усредненная система имеет устойчивое положение равновесия, соответствующее движению всех планет в одной плоскости а одну сторону по круговым орбитам. Движение планет, соответствующее малым колебаниям в линеаризованной около этого равновесия усредненной системе, называется лагранжевым движением. Оно имеет простую геометрическую интерпретацию. Вектор, направленный из фокуса в перигелий планеты и имеющий длину, пропорциональную ее эксцентриситету (вектор Лапласа), в проекции на основную плоскость системы координат является суммой п—1 равномерно вращаюшлхся векторов. Набор угловых скоростей этих векторов одинаков для всех планет. Вектор, направленный по линии пересечения плоскости орбиты планеты с основной плоскостью (линии узлов) и пропорциональный по длине наклонению планеты, является суммой п—2 равномерно вращающихся векторов". Если в некоторый момент времени эксцентриситеты и наклонения достаточно малы, то в усредненной системе они останутся малыми и во все время движения. В частности, оказываются невозможными столкновения планет и уходы на бесконечность. Это утверждение называется теоремой Лагранжа — Лапласа об устойчивости Солнечной системы. С момента доказательства теоремы (1784 г.) центральная математическая задача небесной механики состояла в том, чтобы перенести этот вывод об устойчивости с усредненной системы на точную. На этом пути возникли многие разделы теории динамических систем, в том числе теория возмущений и эргодическая теория. Сейчас решение рассматриваемой задачи значительно продвинуто. Оказывается, при достаточно малых массах планет большая доля области фазового пространства, соответствующей не-зозмущенном движению в одну сторону по кеплеровским эллипсам малых эксцентриситетов и наклонений, заполнена условно-периодическими движениями, близкими к лагранжевым (см. 3). Таким образом, устойчивость имеет место для большинства начальных условий. При начальных условиях из исключительного множества эволюция больших полуосей если и происходит, то очень медленно — ее средняя скорость экспо-  [c.186]

Приводятся основные определения и теоремы, излагается математический аппарат вибрационной механики—нового направления в теории механических колебаний, характеризуемого математическим подходом к описанию и исследованию широкого круга явлений, имеющих место при действии вибрации на нелинейные механические системы и лежащих в основе ряда современных машин и технологий. Специальные разделы посвящены вибрационной механике механизмов и машин, синхронизации роторов, вибрационному перемещению и смещению, виброреологии. Существенно обобщается принцип автобалансировки Лаваля, рассматриваются приложения к теории резонансов в орбитальных движениях небесных тел.  [c.2]


Смотреть страницы где упоминается термин Основные теоремы теории колебаний : [c.261]   
Смотреть главы в:

Трехмерные задачи математической теории упругости и термоупругости Изд2  -> Основные теоремы теории колебаний



ПОИСК



Колебание основное

Колебания основные

Основные теоремы

Теория колебаний



© 2025 Mash-xxl.info Реклама на сайте