Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Волокна высокомодульные

Характерные свойства основных типов графитовых нитей, используемых в- производстве многонаправленных композиционных материалов, приведены в табл. 6.1. Для получения высоких механических свойств материала обычно применяют высокопрочные и высокомодульные волокна в случае обеспечения более низкой теплопроводности можно использовать низкомодульные волокна. Высокомодульные волокна обусловливают высокую теплопроводность, плотность и наиболее низкое температурное расширение. Выбор самого подходящего типа волокон в каждом конкретном случае следует рассматривать как самостоятельную задачу проектирования [109].  [c.167]


М 40—углеродное волокно высокомодульного типа, выпускаемое фирмой "Тора", с модулем упругости при растяжении 400 ГПа.  [c.68]

ВЫСОКОПРОЧНЫЕ II ВЫСОКОМОДУЛЬНЫЕ ВОЛОКНА б 7  [c.687]

Композиционные материалы, армированные высокомодульными волокнами [117, 125], обладают конструктивными преимуществами и относительно простой технологией их пере-  [c.7]

Композиционные материалы также могут быть подразделены на несколько групп в зависимости от вида применяемой арматуры и связующего. В качестве арматуры для изготовления пространственно-армированных материалов широко применяют обычные и высокомодульные стекловолокна. Для этих же целей используют высокомодульные углеродные волокна, причем преимущественно для изготовления материалов 2—4-й групп, применяемых для создания несущих нагрузку тепловых экранов летательных, космических и глубоководных аппаратов [90, ПО, 122]. Для создания указанных групп пространственно-армированных композиционных материалов могут быть использованы и другие виды высокомодульных волокон, что обусловливается назначением и условиями их работы ]15, 97, 116, 124, 125].  [c.12]

Композиционные материалы. Представление о влиянии этапов графитизации и числа циклов уплотнения на формирование свойств композиционных материалов дает табл. 6.14. Исследования выполнены на ортогонально-армированных материалах с распределением волокон в направлении осей х,у, гв соотношении 1 1 2. В качестве арматуры были использованы высокопрочные (2,38 ГПа) и высокомодульные (517 ГПа) волокна Торнел 75 (плотность армирующего каркаса составляла 0,75 г/см ). Исходной матрицей служила фенольная смола. Технологический процесс изготовления композиционного материала  [c.181]

Если армирование выполняют высокомодульными волокнами а 3> с. то а оо, и из (6.6)—(6.8) следует, что  [c.194]

Успешная разработка высокопрочных, высокомодульных углеродных волокон позволила создать композиты углеродное волокно — металлическая матрица с такими высокотемпературными  [c.412]

Настоящая книга является одним из 8 томов энциклопедического издания Композиционные материалы . В ней рассматриваются Практически все аспекты исследования внутренних поверхностей раздела в полимерных композитах, армированных традиционными стекловолокнами, а также борными и углеродными волокнами. Читатель найдет в книге описание современных методов исследования поверхностей раздела, анализ основных теорий аппретирования и адгезии полимерных матриц к упрочнителям. Впервые опубликованы сведения о химии поверхности высокомодульных и высокопрочных волокон бора и углерода и химии поверхности раздела в армированных ми композитах.  [c.4]

Высокомодульные волокна и поверхность раздела в полимерных волокнистых композитах  [c.228]


Высокомодульные волокна и поверхность раздела а композитах  [c.229]

На рис. 5 и 6 представлены микрофотографии высокомодульных высокопрочных графитовых волокон двух типов. Как следует из полученных результатов, поверхность волокна из вискозы (рис. 5, а) имеет гладкую фибриллярную структуру с бороздками. С помощью оптического микроскопа удалось установить сложную геометрию поперечного сечения волокна (рис. 5,6) с более отчетливо проявляющимися бороздками. Электронные микрофотографии поверхности волокна, полученного из полиакрилонитрила  [c.232]

Карбидное волокно 430 Промышленное углеродное волокно высокомодульное 310—345 Промышленное углеродиое волокно высокопрочное 220—250  [c.38]

Углеродные волокна. В композиционных материалах используются различные виды углеродных волокон. В первом приближении они могут быть разделены на высокомодульные, высокопрочные и среднего качества дешевые волокна. Высокомодульные волокна имеют модуль упругости от 35 000 до 52 000 кгс/мм . Эти волокна обладают самым высоким удельным модулем упругости и в 7—11 раз жестче алюминия, титана и стали. Таким образом, теоретически они могут быть исключительно эффективны для высокожестких конструкций.  [c.84]

В перспективе существует еще один способ повышения жаропрочности тугоплавких металлов и сплавов - путем упрочнения последних высокомодульными тугоплавкими волокнами, т.е. путем создания так называемых композиционных материалов. Макеи-  [c.415]

Бурное развитие современной техники неизбежно выдвигает перед механикой деформируемого тела новые, все более сложные задачи. Традиционные материалы ставятся в чрезвычайно сложные условия высоких температур и давлений, внедряются новые материалы — различные высокожаропрочные сплавы, композиционные материалы, высокопрочные и высокомодульные волокна. Это привело к необходимости, наряду с моделью упругого тела, рассматривать другие модели деформируемого тела, широко применять в инженерных расчетах уже давно сложившиеся методы теории пластичности, ползучести, вязкоупругости, статистические и вероятностные методы при переменных напря- жениях и т. д. За последнее время определилось новое направление механики твердых тел, которое получило название механики разрушения. Развитие этого направления будет опираться на перечисленные теории деформируемого тела, причем они приобретают новое, более широкое значение. Это относится и к теории упругости. В этой связи академик Ю. Н. Работнов в одной из своих статей заметил Теория упругости нашла в наши дни новую область приложения в физике кристаллов, в теории разрушения теория упругости в известном смысле переживает второе рождение и истинная ценность ее только теперь раскрылась в полной мере .  [c.6]

Способы устранения отрицательных особенностей. Использование высоко-модульных, волокон. В целях увеличения жесткости композиционных. материалов ведутся интенсивные работы по созданию высокомодульных волокон. Наиболее распространенными в настоящее время высокомодульными волокнами, применяемыми в качестве арматуры для изготовления композиционных материалов, являются волокна бора, углерода, карбида кремния, бериллия, модуль упругости которых в 5 раз и более превышает модуль упругости стекловолокон [20, 33, 102]. Большой практический интерес вызывают также органические волокна типа PRD-49 Kevlar [113], удельная прочность и жесткость которых в 2—3 раза выше аналогичных характеристик стекловолокон [59, 113]. Появление волокон Kevlar вызвано стремлением создать легкие высокомодульные и высокопрочные волокна со стабильными свойствами при действии динамических нагрузок, резких изменений температуры и условий эксплуатации.  [c.7]

В качестве арматуры пространственно-армированных композиционных, материалов используют как стекловолокно, жесткость которого сравнительно невелика, так н высокомодульные углеродные волокна. Наибольшее распространение углеродные волокна получили при создании трехмерноар-мированных материалов типа углерод-углерод [90, 91, 110, 111, 116, 123, 124, 125]. В настоящее время уже испытываются многомерные схемы армирования. Созданы и анализируются системы, имеющие пять и более направлений армирования. При равномерном расположении армирующих волокон по диагоналям куба (система четырех нитей) удается получить ква-зиизотропный материал, а изменяя соотношение арматуры в разных направлениях, можно создать материалы с заданными свойствами.  [c.10]


Композиционные материалы на основе системы двух нитей целесообразно изготовлять из различных по механическим свойствам армирующих волокон. Высокомодульнь]е углеродные или борные волокна могут быть расположены в направлении утка и частично в направлении основы. Арматуру, искривленную в направлении основы, изготовляют из стекловолокна. При таком комбинировании разных волокон можно значительно повысить жесткость и прочность в направлении основы и утка без заметного снижения прочности на отрыв в трансверсальном направлении и сопротивляемости сдвигу. Хороший эффект в повышении монолитности и надежности таких структур достигается также за счет модифицирования волокон 34].  [c.12]

Были исследованы модельные стеклопластики на основе эпоксидного связующего ЭДТ-10 и многослойных стеклотканей, различающиеся по толщине, схемам переплетения и типам волокон. Для изготовления стеклотканей были использованы сплошные и полые (капиллярные) волокна из алюмобороси-ликатного стекла с парафино-эмульсионным замасливателем и высокомодульного стекла ВМ-1 с замасливателем типа 752. Модуль упругости и коэффициент Пуассона для алюмоборо-силикатных волокон 3 = 7,31 X X 10 МПа, Va = 0,25, для высокомодульных волокон ВМ-1 — а = = 10 МПа, = 0,25 упругие характеристики связующего ЭДТ-10 с = 2900 МПа, V = 0,35.  [c.98]

Для удобства дальнейшего описания введена классификация стеклопластиков по структурной схеме армирования, углу наклона волокон основы к направлению оси 1 и типу арматуры. Стеклопластики на основе алюмоборосиликат-ных волокон АБ обозначены буквой С высокомодульные ВМ и полые волокна обозначены буквами в и п . Структурные схемы армирования материалов (рис. 4.3) обозначены римскими цифрами. Степень искривления волокон (средний угол наклона к оси X (1)1 указана арабскими цифрами, идущими после римской, две последние арабские цифры обозначают объемное содержание волокон. Например, С-1-10-65 означает стеклопла-  [c.99]

Используя метод газовой хроматографии, Брукс и Скола [19] получили интересные данные о реакционной способности поверхности высокомодульных графитовых волокон. Критерием реакционной способности поверхности волокна являлась степень адсорбции паров органических веществ. Измеряя время, необходимое для прохождения паров через хроматографическую колонку, заполненную графитовыми волокнами (служившими субстратом), Брукс и Скола определяли коэффициент адсорбции, или реакционную способность поверхности волокна. Данные, приведенные в табл. 3 и 4, показывают, что при обработке поверхности волокон азотной кислотой степень адсорбции паров п-декана, га-октилами-на и изомасляной кислоты повышается. Реакционная способность графитовой пряжи ТЬогпе1-25 по отношению к воде, толуолу и пиридину значительно возрастает после обработки ее в атмосфере водорода при 1200 °С (табл. 4). По эффективности методы обработки поверхности графитового волокна ТЬогпе1-25 можно расположить в следующей последовательности обработка в атмосфере водорода при 1200°С, обработка в атмосфере аргона при 1200°С и вакуумирование при 1200°С.  [c.244]


Смотреть страницы где упоминается термин Волокна высокомодульные : [c.7]    [c.8]    [c.118]    [c.293]    [c.382]    [c.491]    [c.13]    [c.141]    [c.243]    [c.219]   
Разрушение и усталость Том 5 (1978) -- [ c.378 ]



ПОИСК



Волокна

Высокомодульные волокна и поверхность раздела в полимерных волокнистых композитах

Высокопрочные и высокомодульные волокна



© 2025 Mash-xxl.info Реклама на сайте