Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Приближенные методы решения уравнения переноса излучения

ГЛАВА 9. ПРИБЛИЖЕННЫЕ МЕТОДЫ РЕШЕНИЯ УРАВНЕНИЯ ПЕРЕНОСА ИЗЛУЧЕНИЯ  [c.340]

Приближенные методы решения уравнения переноса излучения 341  [c.341]

Приближенные Методы решении уравнения Переноса излучения 3S9 направлениях  [c.359]

Приближенные методы решения уравнения переноса излучения 361 ответственно  [c.361]

Проблема распространения солнечного излучения через облака относится к одной из классических областей теории, связанной с необходимостью решения уравнения переноса излучения. Наряду с общими трудностями, которые уже обсуждались, при решении указанного уравнения возникают и дополнительные. Поэтому полное и точное решение проблемы в математическом отношении до настоящего времени далеко от своего завершения. Основные успехи последних лет в этом направлении связаны с дальнейшим развитием приближенных и асимптотических (в смысле оптических глубин) методов решения уравнения переноса излучения, а также с применением методов Монте-Карло, которые приобрели статус эталонных.  [c.194]


Метод сферических гармоник дает возможность получить приближенное решение уравнения переноса излучения более высокого порядка ценой дополнительных трудоёмких расчетов. Этот метод был впервые предложен Джинсом [26] в связи с проблемой переноса излучения в звездных атмосферах. Общее описание метода сферических гармоник примени,тельно к переносу излучения можно найти в работе [3], а применительно к переносу нейтронов — в работах [27] и [28].  [c.363]

Задача содержит четыре независимых параметра N, Z, р и со. Если их значения заданы, а также принято некоторое приближение для распределения температуры 0(т), то функция 0 (т) представляется в виде конечного ряда (12.75) и находятся коэффициенты Вт. Затем с помощью (12.76) отыскивается частное решение уравнения переноса излучения, а коэффициенты разложения Л(т1о) и Л(т]) определяются по методу, описанному в гл. 10 и 11. Зная Л(т]о), Л (т1) и Вт, можно найти безразмерную плотность потока результирующего излучения Q (t) по формуле (12.78). Рассматривая Q (t) как заданную функцию, можно численно с помощью метода Рунге — Кутта проинтегрировать дифференциальное уравнение (12.69), используя граничное условие (12.70), и получить первое приближение для профиля температуры 0(т). Затем первое приближение используется для получения второго приближения и т. д. Расчеты повторяются до получения сходимости с заданной точностью.  [c.516]

Уравнение переноса излучения, а также его приближения и различные методы решения, рассмотренные выше, применимы прежде всего к гомогенным средам с молекулярным рассеянием света. Задача оказывается более сложной в случае двухфазных систем. Прежде всего необходимо связать оптические характеристики среды с оптическими параметрами отдельной частицы или неоднородности. Как правило, предполагается, что частицы рассеивают излучение независимо [125]. Индикатриса рассеяния сплошной среды принимается подобной индикатрисе рассеяния отдельной частицы, а интенсивность рассеяния — пропорциональной числу частиц [161].  [c.144]

Применение метода сферических гармоник при расчетах теплообмена излучением в диффузионном приближении. Эффективным средством решения уравнения переноса является метод сферических гармоник. Этот метод достаточно хорошо разработан в приложении к решению кинетического уравнения переноса нейтронов. Запишем уравнение переноса излучения в предположении, что процесс является стационарным и рассеянием можно пренебречь, излучение серое. Кроме того, предположим, что излучение находится в локальном термодинамическом равновесии и, следовательно, спонтанное испускание излучения зависит только от локальной температуры Т. Тогда  [c.175]


Методы второй группы ориентированы на непосредственное решение двух уравнений — переноса излучения и сохранения энергии. Поэтому при проведении расчетов используется в том или ином виде итерационный процесс, при котором задается начальное приближение температурного поля, по этому приближению на основе решения уравнения переноса (6.44) вычисляются поля интенсивности /v и плотности радиационного теплового потока найденная плотность радиационного теплового потока подставляется в уравнение энергии и определяется новое приближение температурного поля и т. д.  [c.202]

Основная идея дифференциально-разностного приближения заключается в представлении потока излучения для рассматриваемого направления в виде разности двух встречных потоков. При таком подходе путем соответствующего интегрирования уравнение переноса излучения заменяется системой из двух дифференциальных уравнений, содержащих в качестве неизвестных поверхностные плотности встречных потоков излучения. Аналогичное интегрирование производится и для получения граничных условий к этим дифференциальным уравнениям. Полученные описанным способом дифференциальные уравнения, граничные условия и уравнение энергии составляют замкнутую систему уравнений дифференциально-разностного приближения, которая и решается в зависимости от постановки задачи тем или иным способом. Коэффициенты переноса, фигурирующие в этой системе уравнений, как уже упоминалось, заранее точно не известны и определяются на основании предварительных приближенных оценок, а в случае необходимости могут быть уточнены итерационным методом. Этим, собственно, и обусловливается приближенность рассматриваемого метода. Вместе с этим сравнительная простота получаемых уравнений, отсутствие принципиальных затруднений при их решении, физическая наглядность сделали дифференциально-разностное  [c.114]

Метод вы[несения. В настоящем параграфе изложим известные и широко применяемые в теории приближенные решения основного интегрального уравнения переноса излучения в спектральной линии при полном перераспределении по частоте  [c.191]

Решение интегродифференциальных уравнений переноса излучения (с учетом или без учета поляризации) представляет собой сложную математическую задачу. Полученные к настоящему времени результаты относятся к простым частным случаям. При этом с самого начала основные результаты теории переноса излучения были получены путем численных расчетов. Этот путь решения уравнений переноса остается, по-видимому, основным и в настоящее время. Тем более, что возможности и вычислительной техники, и методов численного моделирования (прежде всего методов Монте-Карло) существенно возросли. Однако приближенные уравнения переноса по-прежнему используются, так как позволяют легко и наглядно выявить те или иные закономерности.  [c.67]

В заключение хотелось бы сделать следующие замечания. В настоящее время методы томографии, т, е, восстановления внутренней структуры объекта по результатам его зондирования проникающим излучением, базируются на различных уравнениях, описывающих уравнение распространения в среде. Известны формулы обращения для уравнения Гельмгольца (дифракционная томография, уравнения эйконала и т. д.). В 3.4 предложена схема измерений, получены формулы обращения для случая распространения излучения в среде, подчиняющегося уравнению переноса излучения в различных приближениях. Проведенный анализ этих схем и модельные эксперименты показали принципиальную возможность решения задач определения коэффициента экстинкции и распределения интенсивности в сечении светового поля предложенным методом. При других условиях распространения излучения в среде можно найти, по-видимому, схемы измерения и алгоритмы обращения, которые позволят применить принципы томографии для спектроскопии трехмерных объектов.  [c.99]


В связи с этим приходится так же, как и в дифференциальных методах, ограничиваться заданием приближенных значений неизвестных заранее величин, входящих в интегральные уравнения и являющихся функционалами температурного поля. Наиболее эффективным представляется итерационный способ решения. Задаваясь на основании предварительных оценочных расчетов неизвестным температурным полем в излучающей системе, на основании соответствующих вышеприведенных уравнений определяют приближенное распределение спектральной интенсивности излучения, исходя из которого находят значения всех функционалов, подставляют их в интегральные уравнения и, решая последние, получают первое приближение для температурного поля. Многократно повторяя эту операцию, можно получить решение с лк)-бой степенью точности. Иными словами, здесь имеет место аналогия с определением коэффициентов переноса в дифференциальных методах расчета теплообмена излучением. Таким образом, интегральные уравнения теплообмена излучением в общем случае по существу являются своего рода интегральным приближением, часто используемым для исследований и расчетов радиационного теплообмена, в котором неизвестные функциональные величины определяются ли задаются с той или иной степенью точности.  [c.196]

Уравнение переноса излучения (3.40) связано с системой (3.38) тем, что интенсивность собственного излучения матрицыГ(Z)] зависит от ее температуры. В настоящее время разработаны различные приближенные методы решения уравнения переноса излучения (3.40). С их использованием получены численные решения совместной задачи (3.38)- (3.40) переноса энергии излучением, конвекцией и теплопроврдностью в проницаемом покрытии. Полученные результаты позволяют оценить диапазон изменения оптических характеристик матрицы, обеспечивающих ее наибольшую эффективность в том или ином конкретном случае. Так, например, выяснено, что наилучший режим работы пористого слоя как коллектора солнечной энергии достигается в том случае, когда матрица выполнена из материала, прозрачного и нерассеивающего в солнечном спектре, но непрозрачного и рассеивающего в инфракрасном диапазоне. Для теплового экрана с транспирационным охлаждением желательно обратное.  [c.61]

Математические трудности, возникающие при решении ин-тегродифференциальных уравнений, привели к появлению ряда приближенных методов решения уравнения переноса излучения. В приближениях оптически тонкого и оптически толстого слоев (последнее называется также диффузионным приближением, или приближением Росселанда) используются упрощения, вытекающие из предельного значения толщины среды. В приближениях Эддингтона и Шустера — Шварцшильда упрощения связаны с введением допущений об угловом распределении интенсивности излучения. В методе экспоненциальной аппроксимации ядра интегроэкспоненциальные функции в формальном решении заменяются экспонентами. Метод сферических гармоник, метод моментов и метод дискретных ординат — наиболее разработанные методы, позволяющие получить приближения более высоких порядков.  [c.340]

При анализе второго члена в уравнении (3.15), описывающего лучистую составляющую эффективного теплового потока, необходимо оценить оптическую толщину теплового пограничного слоя То. Трудности, возникающие при решении интегродифференциальных уравнений лучистого теплообмена, привели к появлению ряда приближенных методов решения уравнений переноса излучением [3]. В приближениях оптически тонкого и оптически толстого слоев (последнее называется диффузионным или приближением Росселан-да) используются упрощения, вытекающие из предельного значения оптической толщины среды.  [c.64]

Ряд методов решения уравнения переноса основан на усреднении углового распределения излучения и его приближенном представлении [160]. Простейший из них — метод Шварцшильда — Шустера. Сущность его состоит в том, что вместо искомой величины (интенсивности излучения, зависящей как от координаты в пределах рассеивающей среды, так и от направления) определяются усредненные по полусферам интенсивности  [c.142]

При проектировании защиты реактора пользуются разными методами расчета, различающимися как трудоемкостью, так и точностью. Строгое решение задачи возможно лишь с помощью последовательного решения уравнений переноса нейтронов и у-квантов. Однако эти уравнения достаточно точно удается решить лишь для достаточно простых геометрических конфигураций активной зоны и защиты, в основном одномерных (см. гл. IV). Поэтому в практических расчетах. защиты реакторов наряду с решением уравнений переноса излучения применяют н различные приближенные методы, которые можно разбить на две группы полуэмпирнческие, основанные на использовании экспериментальных или теоретических данных, и методы, использующие низкие приближения уравнения переноса. На основе этих приближенных методов в ряде случаев удается проводить практические расчеты даже вручную, и, кроме того, их можно довольно просто реализовать на ЭВМ. Достаточно строгое решение уравнения переноса в основном используется для определения погрешности приближенных методов и при проведении расчетов для самых ответственных направлений, где это позволяют геометрические условия задачи.  [c.48]

Метод моментов, описанный Круком [22], и метод дискретных ординат, рассмотренный Чандрасекаром [2] и Кургановым [3], позволяют получить приближенные решения уравнения переноса излучения более высокого порядка. При этом, как было показано Круком [22], метод моментов, метод дискретных ординат и метод сферических гармоник совершенно эквивалентны.  [c.372]


Радиационные свойства полупрозрачных материалов определялись различными исследователями на основе решения уравнения переноса излучения как приближенными, так и точными методами. Хорак и Чандрасекар [39] получили точное решение задачи о диффузном отражении полубесконечной атмосферой, а Питтс использовал приближение Эддингтона для исследования отражения и пропускания света слоем неэкспонированной фотоэмульсии. Авторы работы [41] преобразовали уравнение переноса излучения в систему обыкновенных дифференциальных уравнений и рассчитали пропускание излучения слоем конечной толщины. Этим не ограничивается перечень имеющихся в литературе приближенных решений. Точность приближенного решения не может быть установлена без сопоставления с точным результатом. Чандрасекар [1] получил точное решение задачи  [c.473]

Для рассматриваемого случая при дополнительном условии, что излучение в среде близко к изотропному, получено уравнение переноса в приближении диффузии излучения. Это уравнение аналогично уравнению теплопроводности. Получить решение уравнения переноса в приближении дифтфузии излучения относительно просто, например, с помощью метода конечных разностей, который успешно применяют при решении уравнений теилопроводности (гл. 4, 5, 6).  [c.293]

Поиски эффективных путей решения уравнений радиационного теплообмена привели к созданию различных приближенных методов расчета. Все эти методы исходят из рассмотренного в гл. 3 уравнения переноса излучения с соответствующими граничными условиями к нему. Проведя то или иное интегрирование уравнения переноса излучения и граничных условий, можно получить либо дифференциальные, либо интегральные уравнения, описывающие процесс радиационного теплообмена в различных постановках. При этом в результате интегрирования уравнения переноса и граничных условий по телесному углу в получаемых дифференциальных и интегральных уравнениях в качестве неизвестного фигурирует уже не интенсивность излучения, а различные виды объемных и поверхностных плотностей излучения. Одновременно с этим в этих уравнениях появляются различные коэффициенты переноса, зависящие от распределения интенсивности излучения по различным направлениям, которое заранее неизвестно. Поэтому в отношении этих коэффициентов переноса принимаются те или иные допущения, вследствие чего такие расчетные методы и носят название приближений. Точность, с которой можно оценить неизвестные заранее коэффициенты переноса, определяет собой погрешности приближенных методов. Следует, однако, заметить, что в принципе, сочетая уравнения приближенных методов и интегральное выражение для интенсивности излучения (3-26), можно итерационным путем получить решение задачи с любой степенью точности. К тому же, как показывает анализ, неизвестные коэффициенты переноса во многих случаях являются сравнительно слабоизме-няющимися функциями и их можно оценить заранее с приемлемой точностью. Исторически первым был соз-  [c.113]

В результате применения метода двухмасштабных разложений к системе гидродинамических и термодинамических уравнений, описывающих поведение самогравитирующих газопылевых сгустков, построена математическая модель процессов эволюции сгустков, которая сводится к решению граничной задачи для уравнений Лэна-Эмдена, задачи Коши для нелинейного дифференциального уравнения 1-го порядка относительно энтропии, учитывающего источники энергии за счет распада радиоактивных примесей, и уравнений переноса излучения в диффузионном приближении. Численные расчеты, проведенные для сгустков в широком диапазоне их масс и значений характерной плотности, позволили выбрать для каждого сгустка вероятные начальные распределения плотности, температуры и давления. Проведено численное моделирование и исследованы основные этапы процесса эволюции газового сгустка (с отношением удельных теплоемкостей 7 = 1.57), имеющего массу, эквивалентную массе Земли, характерную плотность 0.4 г/см и теплоемкость при постоянном давлении 1.5-10 эрг (г-К), при наличии в его веществе примесей изотопов корот-кодвижущего А1 с массовой концентрацией сд 10 . Проведена оценка времени эволюции сгустка до начала конденсации.  [c.449]

В этой связи рядом авторов исследовался вопрос о влиянии эффекта рассеяния на перенос энергии излучения. Решение задачи обычно выполнялось на основе дифференциально-разностного приближения Шустера—Шварцшильда. Путем представления поля излучения, например для плоского слоя поглощающей и рассеивающей среды, в виде прямого и обратного потоков излучения было получено приближенное решение интегродифференциального уравнения переноса излучения. Сущность метода, таким образом, состоит в определении интенсивностей излучения 1 (2я)+ и (2л )", осредненных по положительной и отрицательной полусферам. При этом задача сводится к решению системы двух обыкновенных дифференциальных уравнений для интенсивностей излучения /, (2я)+ и 4 (2л)-.  [c.73]

Анализ процессов переноса тепла конвекцией и излучением в пограничном слое излучающей, поглощающей и рассеивающей-жидкости приводит к системе дифференциальных уравнений в частных производных и интегродифференциальных уравнений, которые должны решаться совместно. Математические трудности, возникающие при решении этой системы сложных уравнений, побудили м-ногих исследователей к поискам приближенных методов решения той части задачи, которая связана с излучением. Некоторые авторы использовали приближение оптически толстого слоя, так как оно позволяет решать задачу с помощью обычных методов, использующих автомодельность течения. Приближение оптически тонкого слоя и экспоненциальная,аппроксимация ядра также приводят к значительному упрощению задачи.  [c.524]

Но первому из этих вопросов им опубликовано около 20 научных трудов. Изучением лучистой энергии он занимался в связи с вопросами атмосферной оптики и переноса теплового излучения в атмосфере. Е.С. Кузнецов впервые в области метеорологии связал эти вопросы с кинетическим уравнением. Нм разработаны приближенные методы решения этого типа задач, позволившие получить численные результаты при весьма сложных дополнительных условиях. Разработанные им методы были применены к следуюгцим вопросам.  [c.769]

Метод Соболева часто оказывается достаточным для различных оценок и может служить первым приближением при решении сложных задач о рассеянии на многоуровенных атомах. Точность этого метода, других приближений и численных методов решения уравнения (63) была исследована в работах [63,64,65]. Приближение Соболева тем лучше, чем больше градиент скорости, так как с его увеличением все большая часть фотонов выходит из среды без рассеяния, непосредственно от источников. Это приближение до сих пор используется при расчетах совместного переноса излучения во многих линиях сложных многоуровенных атомов в движущихся средах.  [c.249]


Можно в общем случае решить и уравнение для функции Га. Это решение было получено в работе [123] при исс.ледовании уравнения переноса излучения в малоугловом приближении (2.14). Позднее аналогичное решение исследовалось в работах [110, 124]. Если в (2.14) произвести преобразование Фурье по переменной Л, которая не входит в коэффициенты уравнепия, то мы получим линейное дифференциальное уравнение в частных производных первого порядка, которое легко решается, папример, методом характеристик. Это решение имеет вид  [c.266]

Уравнение лучистого переноса энергии (4.4.10) является интегродифференциальным. Найти его решение для п( акти-"чески интересных задач чрезвычайно сложно, даже если использовать современные ЭВМ. Поэтому на практике часто используют приближенные методы описания поля излучения к изложению некоторых из них мы сейчас и переходим.  [c.164]

Первый, так называемый классический подход в методах алгебраического приближения характеризуется тем, что алгебраической аппрокснмании подвергается непосредственно исходное интегральное уравнение радиационного теплообмена, составленное для любого вида плотностей излучения. Для определения средних по дискретным участкам излучающей системы плотностей излучения подобная аппроксимация, по-видимому, впервые была применена О. Е. Власовым [Л, 100] при решении частной задачи переноса излучения в каналах с адиабатическими стенками. В дальнейшем эта идея была развита и обобщена для произвольного числа серых диффузных поверхностей, разделенных диатермической средой, и для систем с поглощающей средой в работах Г. Л. Поляка [Л. 19, 93, 130].  [c.220]


Смотреть страницы где упоминается термин Приближенные методы решения уравнения переноса излучения : [c.369]    [c.373]    [c.8]    [c.774]    [c.554]    [c.488]    [c.399]   
Смотреть главы в:

Сложный теплообмен  -> Приближенные методы решения уравнения переноса излучения



ПОИСК



Метод решения уравнений

Методы приближенные

Переноса уравнение методы

Переноса уравнение уравнение переноса

Переносье

Приближенные методы решения

Приближенные методы решения уравнений

Решение уравнения переноса

Решения метод

Решения приближенные

Ток переноса

Уравнение метода сил

Уравнение переноса излучения



© 2025 Mash-xxl.info Реклама на сайте