Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

О дискретных моделях теории упругости

Из (3.43) следует, что при г- 0 напряжения стремятся к бесконечности, т. е. в центре дислокации не выполняется закон Гука. Здесь для определения поля напряжений нужно пользоваться дискретной атомной моделью. Область вокруг линии дислокации, в которой не применима линейная теория упругости, называют ядром дислокации. Радиус ядра дислокации го Ь.  [c.106]


Точное нахождение минимума П(р) эквивалентно точному решению дифференциального уравнения теории упругости, которое является бесконечномерной задачей. Замена бесконечномерной задачи п-мерной, то есть переход к дискретной модели, осуществляется следующим образом  [c.22]

Систематически излагаются постановки пространственных контактных задач линейной теории упругости и методы их решения, не требующие математического аппарата, выходящего за рамки курса высшей математики для технических университетов. Изучаются контактные задачи для системы штампов, строятся асимптотические модели одностороннего дискретного контакта и рассматриваются вопросы равновесия твердого тела, опирающегося на шероховатую плоскость в нескольких точках. Подробно изложена техническая теория упругого ненасыщенного контакта шероховатых поверхностей.  [c.2]

Уравнение (5) характеризует реологическое состояние среды, в которой при постоянной деформации напряжение релаксирует до нуля по экспоненциальному закону. Уравнение (6) описывает деформацию среды с последействием. В этой среде при мгновенном снятии напряжений деформация экспоненциально убывает до нуля. Уравнение (7) соответствует деформации сложной среды с релаксацией напряжения и последействием. Следует отметить, что в литературе деформацию упругого последействия часто называют эластической. Если она достигает очень высоких значений, ее общепринято именовать высокоэластической. Аналогично уравнениям (5)—(7) можно составить уравнение модели вязко-упругого тела с любым (конечным или бесконечным) набором времен релаксации и последействия. Естественным обобщением модельной теории вязко-упругой среды является интегральная теория вязко-упру-гости, в которой спектры времен релаксации и последействия могут быть как дискретными (тогда реологическое поведение тела можно описать соответствующей моделью), так и непрерывными. Изложение этой теории описано, например, в монографии Д. Бленда Теория линейной вязкоупругости (Издательство Мир , М. 1965).  [c.16]

В настоящем пункте описывается широкий класс дискретных моделей, дающих близкие к классической теории упругости результаты, и выясняется степень их близости.  [c.239]

Опыт работ- по применению электромоделирования к практическому решению задач теории упругости показывает его большую эффективность по сравнению с другими экспериментальными методами . В приведенной ниже табл. IV. 8 дается перечень более 100 задач по определению полей напряжений, решенных методом электромоделирования. При электромоделировании не требуется изготовления отдельных моделей и нагрузочных устройств. Заданная область весьма просто набирается на сетках интегратора, точное выполнение граничных условий, соответствующих заданным внешним силам, не составляет трудностей. Данные экспериментального решения на электрической модели в виде первых разностей функции в дискретных точках области дают возможность определить величины напряжений при плоском напряженном состоянии, а также прогибов, изгибающих и крутящих моментов и перерезывающих сил при исследовании тонких плит на изгиб.  [c.333]


Сплошность. Реальные тела, строго говоря, не являются сплошными, а имеют дискретную структуру. Однако при достаточно плавном изменении напряженного состояния, когда напряжения на расстоянии порядка межатомного или порядка размера зерна в поли-кристаллическом материале можно считать постоянными, влияние дискретности практически отсутствует (проявляется слабо). Таким образом, предположение о сплошности обычно оправданно, введение же этого понятия существенно облегчает построение математической теории упругости и анализ конкретных задач. Вместе с тем результаты, следующие из теории упругости сплошной среды, нельзя абсолютизировать. В частности, поверхности разрыва напряжений и скоростей, определяемые уравнениями динамики сплошной среды, в действительности должны быть несколько размыты, а структура фронта волны должна зависеть от микроструктуры материала. С дискретными моделями связаны первые исследования по теории упругости (см. [20]). В последнее время теория упругой среды с микроструктурой получила значительное развитие [20 22 49 50]. Влияние дискретности на распространение упругой волны будет проиллюстрировано на простом примере в 2.  [c.14]

До сих пор, рассматривая распространение волн в кристаллах, мы не принимали во внимание дискретную структуру кристаллической решетки. Так можно поступать до тех пор, пока длина акустической волны X остается много большей, чем постоянная решетки а, или до частот 100 ГГц. Выше этого предела дисперсионные кривые, получаемые из уравнений классической теории упругости, уже плохо согласуются с микроскопическими расчетами, базирующимися на уравнениях динамики решетки. Поэтому, если оставаться в рамках феноменологических моделей механики сплошных сред, то уравнения состояния кристалла необходимо модернизировать для учета дискретности среды, макроскопически проявляющейся в нелокальности ее реакции на приложение переменного в пространстве внешнего воздействия. Это можно сделать с помощью так называемой нелокальной теории упругости [19], представляющей собой феноменологическое обобщение классической механики сплошной среды. Одно уравнение состояния элемента сплошной среды, описывающее как пространственную, так и временную нелокальность, уже приводилось нами при рассмотрении релаксационных процессов. Если не учитывать временную нелокальность (которая, в частности, ответственна за диссипацию энергии в среде), то для твердого тела нетрудно получить следующее уравнение состояния (нелокальный закон Гука)  [c.231]

Метод конечных элементов (МКЭ) применяется для моделирования напряженного состояния склонов сложного геологического строения. Ои позволяет получать приближенные решения уравнений теории упругости, что достигается заменой сплошной среды дискретным аналогом, состоящим из конечного числа отдельных элементов, вплотную прилегающих друг к другу и шарнирно скрепленных в вершинах этих элементов. Форма и размеры объекта подчиняются в модели строгому геометрическому подобию или ограничиваются на некотором расстояний от места приложения нагрузок, где значениями напряжений или перемещений, возникающих от этих нагрузок, можно пренебречь. Форма элементов может быть различной, она зависит от формы рассматриваемой области или ее участков. Для плоской задачи наиболее простые решения получаются при треугольной или прямоугольной форме элементов.  [c.152]

В этой главе исследуется приложение метода конечных элементов к задачам теории упругости при конечных деформациях ), т. е. к задачам об очень больших деформациях упругих тел, когда не накладывается никаких ограничений на порядок величин перемещений, градиентов перемещений и компонент тензора деформаций. При этом в качестве частных случаев получаются различные дискретные модели задач классической теории упругости при бесконечно малых деформациях. Однако прежде чем рассматривать свойства дискретной модели, надо охарактеризовать механические свойства материалов, которые считаются упругими.  [c.235]


При построении теории многослойных эластомерных конструкций принята дискретная математическая модель, где деформация каждого слоя описывается своими уравнениями. Такой путь представляется единственно возможным, поскольку методы осреднения упругих свойств по толщине пакета, используемые в слоистых средах, здесь оказываются непригодными нормальные тангенциальные напряжения терпят разрыв на поверхностях контакта слоев, отличаясь абсолютной величиной и знаком.  [c.299]

Впервые принцип Гаусса на сплошные среды был распространен в 1958 г. Н. А. Кильчевским. В работе [35] с помощью принципа Гаусса решены задачи о контактном сжатии упругих тел, а в работе [53] принцип наименьшего принуждения применен к задачам теории фильтрации. Затем, начиная с 1959 г. [92, 99], этот принцип применялся к средам с жестко-пластической моделью деформирования и, наконец, к упругим средам [91] для дискретных систем, где существенны тепловые процессы, и для сплошной среды без конкретизации ее законов деформирования и распространения тепла [23, 93, 94].  [c.132]

Как мы видели, трещина в деформируемом теле создает очаг возмущения напряженного состояния, характерный сильной концентрацией напряжений у ее острия. На первый взгляд любая малая трещина благодаря стремлению напряжений к неограниченному росту с приближением к кончику трещины должна была бы породить прогрессирующий процесс разрушения. Однако такой теоретический результат следует из модели идеально упругой сплошной среды и не соответствует реальным физическим свойствам материала. Дискретная структура реального материала и нелинейность механических соотношений для него в сильной степени изменяют картину фиаико-меха-нического состояния, следующую из линейной теории упругости. В результате, как показывает опыт, в одних условиях трещина может устойчиво существовать, не проявляя как-либо себя, а в других — происходит взрывоподобный рост треш ины, приводящий к внезапному разрушению тела. Существуют попытки проанализировать это явление на атомном уровне методами физики твердого тела. Они представляют определенное перспективное направление в этой проблеме, но, к сожалению, до сих пор полученные здесь результаты далеки от уровня прикладных инженерных запросов.  [c.383]

Рассмотрены двумерные статические задачи теории трещин. В частности, изложена теория Гриффитса, проанализировано напряженное состояние в окрестности вершины трещины в линейной и нелинейной постановках, рассмотрены формы математической интерпретации реальных трещин и особенности, вносимые различными формами представления в описание процесса хрупкого разрушения, проведен учет структуры среды, как с помощью моментиой теории упругости, так и посредством рассмотрения дискретных моделей.  [c.504]

Ззхмена интегрального уравнения упругого контакта тел системой линейных алгебраических уравнений (метод Фредгольма) эквивалентна допущению об удовлетворении условий совместности перемещений в конечном числе точек контакта. Последнее соответствует основе численных методов теории упругости — замене континуальной расчетной модели детали (тела) с непрерывным распределением параметров и бесконечным числом степеней свободы дискретной моделью, имеющей конечное число неизвестных.  [c.115]

Будем считать, что краевая задача теории упругости или пластичности решается по методу конечных элементов [16], а дискретная модель строится нз 20-узловых квадратичных конечных элементов. Типичный диск из конечных элементов вокруг сегмента фронта трещины изображен на рис. 3. Предполагаем, что для реализации расчета по методу ЭОИ в нашем распоряжении имеются перемещения в узлах конечных элементов, а также значения деформации, напряжений и работы напряжений на деформациях в гауссовых точках интегрирования 2X2X2.  [c.370]

Хуторянский Н. М. Построение экономичных дискретных моделей интегральных уравнений теории упругости на основе овойсгв локальных ядер. — Прикладные проблемы прочности и пластичности. Алгоритмизация и автоматизация решения задач упругости и пластичности, йсеооюз. межвуз. сб./ Горьк. ун-т, 1080, с. Э в- .  [c.290]

При изучении динамических процессов в машинах необходим учет инерционных, упругих и диссипативных свойств материалов. Известны два способа учета этих свойств, используемых при составлении расчетных моделей (см. 5 гл. 1). При первом способе учитывают непрерывное (континуальное) распределение перечисленных свойств. При этом в математические модели, отображающие динамические процессы, включаются дифференциальные уравнения в частных производных, теория которых составляет предмет изучения математической физики. При втором способе предполагают, что свойства материалов отображаются дискретно, т. е. имеют точки или сечения концентрации. При этом количество свобод движения системы считают конечным. Математические модели таких систем содержат обыкновенные дифференциальные уравнения. Для составления динамических моделей, являющихся основанием для составления дифференциальных уравнений, необходимо определить приведенные параметры, отображающие свойства материалов. При предположении о дискретном распределении свойств материалов принимают следующие допущения тела или звенья, наделенные сосредоточенной массой, лищены упругости упругие или упругодиссипативные связи лищены массы. Приведение реальных мащин и мащин-ных агрегатов к условным расчетным схемам неизбежно дает  [c.98]


Принцип размазывания , использованный в работе [21], отличен от процедуры сглаживания слабоизменя-ющихся функций, примененной в теории армированных сред [5, 6]. Он в большей степени подобен методу усреднения дискретно распределенных свойств армированной среды по всему непрерывному спектру направлений, который применялся в работах [43, 44] для определения эффективных констант композиционного материала. В работе [21], так же как н в работе [44], размазанная сеть волокон эквивалентна такой модели среды, в которой через каждую точку пространства проходят все направления волокон. Л1атрица жесткости такой среды отождествляется с матрицей жесткости однородного линейно-упругого материала. Плотность энергии деформации этого материала равна удельной энергии деформирования четырех стержней (волокон), создающих симметрию упругих свойсгв первой составляющей модели материала 4D.  [c.80]

В шестой главе рассмотрена проблема потери устойчивости эластомерных конструкций при осевом сжатии. Предполагалось, что армирующие слои являются абсолютно жесткими. Предложены две модели для анализа устойчивости дискретная и непрерывная с приведенными упругими параметрами. Путем предельного перехода при увеличении числа слоев в дискретной структуре получен закон упругости для композитных стержней и балок с криволинейными слодми. Построена теория изгиба композитных стержней, учитывающая влияние осевой сжимающей силы на сдвиговую и изгибную жесткости конструкции.  [c.28]

Если конструкция содержит достаточно большое количество слоев, можно перейти от анализа устойчивости пакета как дискретной системы к уравнениям сплошной среды с приведенными упругими параметрами. Условия такого перехода в зависимости от количества слоев и граничных условий были проанализированы в упомянутой работе Р. Шепери и Д. Скала [249]. Путем сопоставления результатов расчета критических нагрузок многослойной колонны по дискретной и непрерывной моделям авторы пришли к выводу, что с приемлемой для технических приложений 6%-ной точностью использование континуальной теории возможно при числе резиновых слоев больше десяти для колонн с защемленными концами и более пяти для колонн с шарнирно опертыми концами.  [c.223]

В механике контактного взаимодействия шероховатых тел для расчёта характеристик дискретного контакта широко используется модель Гринвуда и Вильямсона [182] (см. также [66, 181]). Шероховатость в ней моделируется системой сферических сегментов одинакового радиуса (неровности), высота которых является случайной величиной, подчиняющейся некоторому закону распределения. Предполагается, что каждая неровность деформируется упруго в соответствии с теорией Герца. Влияние же других неровностей оценивается осреднённым (номинальным) давлением. Были разработаны многочисленные модификации данной модели, анализу которых посвящена работа [213]. Как будет показано ниже (см. 1.2), такой подход может привести к погрешности в расчётах при высоких плотностях  [c.17]

Для расчетов процессов импульсной штамповки листовых заготовок в закрытые матрицы рассмотрим простую модель контактного взаимодействия деформируемой пластины с жесткой преградой. Описанная в 3.2 конечно-разностная модель динамики балки или цилиндрического изгиба пластин представляет собой дискретную систему связанных материальных точек (узлов). Если полагать, что время контактного взаимодействия каждой отдельной узловой массы Шг меньше, чем расчетный интервал шага по времени At для явной схемы расчета, то моделирование контактного взаимодействия можно представить как мгновенное изменение скорости узловой массы в интервале At. При этом ее можно считать свободной и корректировать нормальную составляющую скорости к преграде по направлению и величине в соответствии с заданным коэффициентом восстановления. Это соответствует использованию теории стереомеханического удара [48] для системы материальных точек, реакция внутренних связей между которыми возникает ва время, большее, чем время формирования ударного импульса в отдельной узловой точке-массе. Данное предположение приближенно выполняется для достаточно тонких пластин и их дискретного представления, когда длина звеньев As суш,ественно больше удвоенной толщины. Тогда время единичного контактного взаимодействия оценивается двойным пробегом волны сжатия и растяжения по толщине пластины, а время формирования внутренних сил при взаимодействии соседних узловых точек в процессе деформирования определяется временем пробега упругой волны по длине звена As.  [c.66]


Смотреть страницы где упоминается термин О дискретных моделях теории упругости : [c.239]    [c.241]    [c.243]    [c.247]    [c.667]    [c.239]    [c.69]    [c.190]    [c.15]    [c.264]    [c.25]    [c.234]    [c.238]    [c.255]    [c.255]   
Смотреть главы в:

Математические вопросы трещин  -> О дискретных моделях теории упругости



ПОИСК



Дискретность

Модель дискретная

Теория упругости

Упругость Теория — см Теория упругости



© 2025 Mash-xxl.info Реклама на сайте