Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Штамповка импульсная

Штамповку импульсным магнитным полем применяют для обжима и раздачи трубчатых заготовок, калибровки трубчатых деталей, формовки рифлений, вырубки плоских деталей, пробивки отверстий в деталях из различных металлов и сплавов, сборки. Для обработки предпочтительны металлы и сплавы с высокой электрической проводимостью. Материалы с недостаточно высокой электрической проводимостью (углеродистые и коррозионно-стойкие стали) деформируют через передающую среду или через спутник — промежуточный материал с высокой электропроводностью, помещаемый на заготовку. Толщина заготовок 1,5 — 2 мм для стали, 1,7 —2,5 мм для латуни, 2 — 3 мм для алюминиевых и магниевых сплавов.  [c.167]


Принципиальная схема установки для штамповки импульсным магнитным полем представлена на рис. 149. Основными узлами установки являются источник питания 1, накопитель энер-  [c.278]

Рис. 5.6. Штамповка импульсным электромагнитным полем Рис. 5.6. Штамповка импульсным электромагнитным полем
Штамповка импульсным магнитным полем. Деформирование металла импульсным магнитным полем основано на преобразовании электрической энергии в энергию импульсного магнитного поля, совершающую работу деформирования исходной заготовки.  [c.225]

Электромагнитная штамповка по принципу создания импульсно воздействующих на заготовку сил отличается от ранее рассмотренных (рис. 3,47, б). Электрическая энергия преобразуется в механическую аа счет импульсного разряда батареи конденсаторов через соленоид , вокруг которого при этом возникает мгновенное магнитное поле высокой мощности, наводящее вихревые токи в трубчатой токопроводящей заготовке 3. Взаимодействие магнитных полей вихревых  [c.114]

В качестве достижений отечественного кузнечно-прессового машиностроения следует указать на развитие импульсных процессов штамповки  [c.55]

Развитие импульсных процессов характеризовалось введением штамповки взрывом, электрогидравлической штамповки, штамповки магнитным полем и др.  [c.56]

Лепестки для многослойных сосудов значительных габаритов можно изготавливать из листа на одной штамповой оснастке, так как для разных слоев сосуда кривизна лепестков изменяется незначительно. Там же энергией взрыва пакета можно проводить и калибровку лепестков (рис. 2) для всех слоев резервуара. Она целесообразна и в том случае, если лепестки будут изготавливаться па прессовом оборудовании, так как при импульсных методах металлообработки пружинение лепестков будет минимальным. Такое совмещение операций взрывной штамповки (калибровки пакетов) и штамповки лепестков для пакетов на прессах позволит значительно повысить производительность труда и качество изготавливаемых сосудов.  [c.50]

Высокоэнергетические импульсные методы листовой штамповки. При гидровзрывной штамповке энергия взрыва передается заготовке через ударную волну и движение гидропотока. Передающей средой может быть жидкость, сыпучая, вязкая или твердая среда. Деформируемые листовые или трубчатые заготовки можно подвергать пробивке, вытя кке, рельефной формовке, раздаче, обжиму, отбортовке и др. (рис. 47). Возможно также формообразование при нагреве заготовки передающей средой (песком). Для взрыва используют бризантные и метательные взрывчатые вещества. Взрыв можно производить в стационарном или съемном (разовом) бассейне. Для формообразования используют один инструмент — матрицу или пуансон для вытяжки и рельефной формовки — матрицу для обжима — пуансон.  [c.166]


Рис. 49. Схемы импульсной магнитной штамповки Рис. 49. Схемы <a href="/info/319255">импульсной магнитной</a> штамповки
Импульсную магнитную штамповку осуществляют на установках отечественного производства, а также установках производства ГДР, ЧССР с максимальной запасаемой энергией 4,1 — 22,5 кДж.  [c.167]

Достижения в области физики обусловили начало разработки магнитно-импульсной обработки материалов, штамповки взрывом, электроннолучевых методов обработки. Некоторые из теорий поведения материи в микромире начинают получать свое реальное применение при создании новых материалов и обеспечении их высоких свойств. Это использование новых видов материалов, ранее почти не применяемых, как например, титан и другие, изменение свойств ранее известных материалов путем присадок тугоплавких элементов (бериллий, церий, торий и др.). Современные достижения в области физики позволяют развить физическое металловедение, что способствует обеспечению повышенных эксплуатационных свойств машин, а в связи с этим и применяемых для них материалов.  [c.6]

Электромагнитная штамповка основана на преобразовании электрической энергии в механическую путем импульсного разряда конденсаторов в рабочий виток соленоида.  [c.241]

Приложение нагрузки в этом процессе носит импульсный характер. Разрядка конденсаторов происходит за 40—50 микросекунд. За это время в мощных установках выделяется громадная энергия, создающая большие давления, а скорость деформирования при этом равна скоростям, характерным взрывной штамповке.  [c.241]

Рис. 3.84. Схемы импульсных способов листовой штамповки Рис. 3.84. Схемы импульсных способов листовой штамповки
Магнитно-импульсная штамповка (рис. 21.8) характеризуется тем, что давление на деформируемую металлическую заготовку создается непосредственным воздействием импульсного магнитного поля, без участия промежуточных твердых, жидких или газообразных сил. Это позволяет штамповать детали из полированных и лакированных заготовок без повреждения поверхности, а также деформировать заготовки, заключенные в герметическую пластмассовую оболочку.  [c.443]

Рис. 21.8. Магнитно-импульсная штамповка Рис. 21.8. <a href="/info/319255">Магнитно-импульсная</a> штамповка
Движущаяся с высокой скоростью заготовка (300—400 м/с) ударяется о матрицу 4, в результате чего возникают огромные силы соударения, деформирующие заготовку. Импульсная магнитная штамповка получила довольно большое применение в промышленности для вытяжки, пробивки отверстий, обжатия и раздачи труб, сборки трубчатых деталей с оправками и т. п.  [c.444]

Описанные выше методы листовой штамповки являются статическими либо квазистатическими, т. е. скорость нарастания нагрузки и движения рабочего инструмента в них невелики. Известны также высокоскоростные, или импульсные, методы листовой штамповки, которые характеризуются мгновенным приложением больших нагрузок, что разгоняет заготовку до скоростей 150 м/с, и последующее деформирование происходит за счет кинетической энергии, накопленной в период разгона. В промышленности широко применяются взрывная и магнитно-импульсная (электромагнитная) штамповки.  [c.353]


Рис. 16.60. Схема магнитно-импульсной штамповки Рис. 16.60. Схема <a href="/info/319255">магнитно-импульсной</a> штамповки
Технологические операции магаитно-импульсной штамповки осуществляют в основном по двум схемам обжим и раздача. На рис. 16.61 даны схемы взаимного расположения обмотки индуктора /, инструмента 2 и изделия 3. Стрелками показано направление магнитных силовых линий.  [c.355]

Магнитно-импульсной штамповкой можно получать не только трубчатые, но и плоские изделия, а также выполнять сборочные операции путем пластического деформирования одной детали по контуру другой соединение концов труб, запрессовку в трубах колец и фланцев, соединение втулки со стержнем и т. д.  [c.355]

Общие принципы выбора оборудовании. Для листовой штамповки применяют кривошипные машины и автоматы, гидравлические и винтовые прессы, паровоздушные молоты, высокоскоростные машины импульсного действия.  [c.503]

Все типы оборудования имеют узкую направленность (штамповка, опрессовка и др.), т. е. не являются универсальными. Такое оборудование не обладает способностью коммутировать токи до одного миллиона ампер при длительном сроке службы рабочих электродов коммутирующего устройства, не имеет собственной частоты колебаний около 100 кГц, у него отсутствует простой надежно работающий рабочий орган — индуктор с большим ресурсом работы, что необходимо для магнитно-импульсной сварочной установки.  [c.271]

Штамповка холодная листовая 275-288 -Высокоэнергетические импульсных методы 286,287  [c.910]

В книге частично использованы материалы, помещенные в ранее изданных трудах автора. Однако они подверглись коренной переработке, обусловленной развитием науки и техники в области листовой штамповки. В книге рассмотрены в новом аспекте такие вопросы как штамповка деталей в мелкосерийном и опытном производствах, групповые методы штамповки и штамповка по элементам, высокоэнергетические — импульсные способы штамповки, штамповка с применением ультразвука, автоматизация технологической подготовки производства и проектирования  [c.3]

ОСТ 1.41177—78. Р счеч ва прочность матриц для штамповки импульсными ками  [c.255]

В самые последние годы начал осваиваться совершенно новый способ обработки материалов — электрогидравлический (изобретение Л. А. Юткина). С помощью этого способа электрическая энергия трансформируется в механическую в жидкой среде (чаще воде) без промежуточных звеньев и с достаточно высоким к. п. д. За счет гидравлического удара, создающегося при высоковольтном импульсном разряде, можно вести разнообразные механические процессы взрывание крепчайших пород, их дробление, очистку литья от формовочной земли, штамповку, получение коллоидов металлов, уплотнение намывного грунта, выделение металла из шлаков и многие другие.  [c.127]

Нельзя не отметить большой работы по модернизации кузнечно-прессовых машин, по разработке и внедрению в производство новых типов. Так, внедрение импульсной, взрывной, беспрессовой штамповки стимулировало разработку соответствующих машинных установок. Созданы установки со взрывом в воде, в вакууме, электроразрядные установки в воде, взрывные со смесью газов. Особое место занимают импульсные установки с сильными магнитными полями. Для штамповки деталей из жаропрочных сплавов и тугоплавких металлов потребовались кузнечно-прессовые машины высоких энергий типа высокоскоростных молотов со скоростями удара 30—50 м сек и со встречным движением рабочих частей, устраняющим действие удара на фундамент. Ведутся разработки штамповочных гидравлических прессов нового типа динамического действия с большой энергоемкостью. Парк кузнечно-прессовых мапшн пополнился уникальными мощными ттамповочны- , ми гидравлическими прессами с усилием до 75 тыс. т. Проводятся боль- пше работы но виброизоляцпи фундаментов паро-воздушных молотов с целью устранения ударного воздействия на грунт при их работе. Вподряются в производство мощные одноцилиндровые гидравлические малогабаритные прессы с усилием До 30 тыс. т для штамповки с высоким давлением рабочей жидкости (до 1000 атм.)  [c.112]

Получат распространение дыропробивные прессы с программным управлением для последовательной пробивки отверстий в деталях типа панелей специализированные магнитно-импульсные установки автоматы для выдавливания полых сосудов, машины и установки для штамповки эластичной матрицы автоматы-ком-байны для полного изготовления винтов.  [c.214]

Импульсный эхометод в контактном и иммерсионном варианте широко и успешно применяется для обнаружения трещин, раковин, флокенов, шлаковых включений, структурной неоднородности, непро-вара, непропая и других дефектов металла в поковках, штамповках, трубах, профилях и сварных соединениях при одностороннем доступе к этим изделиям.  [c.349]

Рассмотрена возможность использования знергии импульсных источников при получении многослойных негабаритных сосудов. Проведен анализ схем штамповки и калибровки слоев для сферических сосудов и дана методика определения основных параметров технологических процессов. Предложены схемы получения цилиндрических сосудов, а также горловин и других нодсоединитель-ных элементов для сосудов. Показана возмоншость получения сосудов с гарантированным зазором между слоями, беззазорных и с гарантированным натягом.  [c.376]


Одним из новых прогрессивных методов импульсного нагружения является использование электрической энергии, накопленной батареей высоковольтных импульсных конденсаторов и выделяемой в весьма короткий период времени непосредственно на обрабатываемую деталь или через промежуточную среду. В зависимости от способа выделения энергии различают электрогидравлическую штамповку, основанную на использовании импульсного электрического разряда или взрыва инициирующего проводника в жидкости, магнитноимпульсную штамповку, где деформирующее усилие возникает в результате взаимодействия импульсных магнитных полей поля катушки-индуктора и поля, возникшего от наведенных токов в формируемой заготовке. В случае использования этих методов упрощается и удешевляется по сравнению с обычными прессовыми методами листовой штамповки технологическая оснастка и в значительной степени ускоряются сроки освоения нового производства.  [c.259]

Опыт эксплуатации существующих электроимпульсных (электрогидравлических и магнитно-импульсных) установок показал наиболее эффективное их использование в индивидуальном и мелкосерийном производстве, когда имеют место большая номенклатура и мелкие серии изготовления деталей. Поэтому не вызывает сомнений, что создание установок, позволяющих одновременно выполнить ряд технологических операций листовой штамповки с использованием энергии электрического разряда в жидкости и импульсного магнитного поля и имеющих один источник питания (генератор импульсных токов), значительно расширит область применения их в промышленности. Такие установки (ЭМОМ-25 и ЭМОМ-50) созданы в Физико-техническом институте АН БССР. Их отличительными особенностями являются  [c.260]

Целесообразность изготовления детали из порошка на основе железа зависит от ее формы, требований к комплексу механических характеристик и других служебных свойств и от серийности производства. При этом мы говорим об изготовлении деталей штамповкой на прессах, поскольку газостаты, гидростаты, устройства для импульсной, взрывной штамповки предоставляют другие возможности.  [c.126]

Электромагнитная штамповка по принципу создания импульсно воздействующих на заготовку сил отличается от ранее рассмотренных (рис. 3,84, б). Электрическая энергия преобразуется в механическую за счет импульсного разряда батареи конденсаторов через соленоид 7, вокруг которого при этом возникает мгновенное магнитное поле высокой мощности, наводящее вихревые токи в трубчатой токопроводящей заготовке 3. Взаимодействие магнитных полей вихревых токов с магнитным полем индуктора создает механические силы q, деформирую1цие заготовку. Для электромагнитной штамповки трубчатых и плоских заготовок созданы специальные установки, на которых можно проводить раздачу, обжим, формовку и операции по получению неразъемных соединений деталей. К сборочным операциям, выполняемым путем пластического деформирования одной детали по контуру другой, относятся соединение концов труб, запрессовка в трубах колец, соединение втулки со стержнем и т.д.  [c.141]

При взаимодействии мощного магнитного поля индуктора с индуцированным в заготовке током и его магнитным полем возникают элекромеханические силы взаимодействия, стремящиеся оттолкнуть заготовку от индуктора и вызывающие ее деформацию. Магнитный импульс длится от 10 до 20 мкс, создавая давление от 3500 до 39 000 кг/см . Так же как и при штамповке взрывом, длительность магнитного импульса во много раз меньше времени деформации заготовки. Поэтому импульсное поле непосредственно действует на заготовку лишь в начальный момент (период разгона), после  [c.443]

Установка для магнитно-импульсной штамповки (рис. 16.60) состоит из источника энергии, высоковольтного зарядно-выпрямительного устройства 1, батареи конденсаторов С, коммутирующего устройства 2 и катушки индуктивности (индуктора) 3. При разряде электрической энергии, предварительно накопленной в батарее конденсаторов установки, на индукторе вокруг его токопроводных элементов образуется мощный импульс переменного магнитного поля. Применение импульсного магнитного поля для штамповки основано на использовании сил электромеханического взаимодействия между вихревыми токами, наведенными в стенке обрабатываемой детали при пересечении их силовыми линиями.магнитного поля, и самим импульсным полем, в результате чего возникают импульсные механические силы, деформирующие заготовку. Магнитное поле, заключенное между индуктором 3 и заготовкой 4, оказывает давление как на заготовку, так и на индуктор. На пути перемещения заготовки установлен технологический инструмент (матрица, пуансон), с помощью которого заготовке придается необходимая форма.  [c.354]

Особенностями МИО являются высокие давления при импульсном характере де< юрмирующего воздействия большая технологическая гибкость процесса при несложной технологической оснастке широкие пределы регулирования рабочего давления на заготовку возможность формообразования высокопрочных материалов преимущественная об-работаа давлением тонкостенных заготовок (операции развальцовки, опрессовки, чеканки, штамповки и т. л.).  [c.153]

Электрогидравлическая импульсная сборка имеет те же преимущества, что и сборка-штамповка взрывом. Этот способ соедииеиия применяют для сборки трубчатых деталей обжимом и раздачей, отбортовкой и формовкой, запрессовкой и развальцовкой, закаткой, гибкой и др. Способ является более производительным и экономичным, чем предыдущий, позволяет многократно (без переналадки) последовательно по участкам или по всей по-  [c.286]

Для расчетов процессов импульсной штамповки листовых заготовок в закрытые матрицы рассмотрим простую модель контактного взаимодействия деформируемой пластины с жесткой преградой. Описанная в 3.2 конечно-разностная модель динамики балки или цилиндрического изгиба пластин представляет собой дискретную систему связанных материальных точек (узлов). Если полагать, что время контактного взаимодействия каждой отдельной узловой массы Шг меньше, чем расчетный интервал шага по времени At для явной схемы расчета, то моделирование контактного взаимодействия можно представить как мгновенное изменение скорости узловой массы в интервале At. При этом ее можно считать свободной и корректировать нормальную составляющую скорости к преграде по направлению и величине в соответствии с заданным коэффициентом восстановления. Это соответствует использованию теории стереомеханического удара [48] для системы материальных точек, реакция внутренних связей между которыми возникает ва время, большее, чем время формирования ударного импульса в отдельной узловой точке-массе. Данное предположение приближенно выполняется для достаточно тонких пластин и их дискретного представления, когда длина звеньев As суш,ественно больше удвоенной толщины. Тогда время единичного контактного взаимодействия оценивается двойным пробегом волны сжатия и растяжения по толщине пластины, а время формирования внутренних сил при взаимодействии соседних узловых точек в процессе деформирования определяется временем пробега упругой волны по длине звена As.  [c.66]


Таким образом, регулируя распределение начального импульса, можно существенно менять конечную форму пластины при штамповке в закрытые матрицы. Такие эффекты наглядно вфояв-ляются при импульсной штамповке пластин накладными зарядами ВВ при различном их расположении. Поэтому расположение зарядов, демпфирующие прокладки, передающие среды, характер подрыва ВВ, распределение начальной толщины заготовки являются важными управляющими параметрами при разработке и оптимизации технологических процессов формообразования оболо-  [c.69]

Высокоэнергетические импульсные методы листовой штамповки. При гидровзрывной штамповке энергия взрыва передается заготовке через уд ную волну и движение гид-ропотока. Передающей средой может быть жидкость, сыпучая, вязкая или твердая среда.  [c.286]


Смотреть страницы где упоминается термин Штамповка импульсная : [c.285]    [c.166]    [c.7]    [c.15]    [c.655]    [c.441]    [c.182]   
Машиностроение Автоматическое управление машинами и системами машин Радиотехника, электроника и электросвязь (1970) -- [ c.111 , c.112 ]



ПОИСК



V импульсная

Высокоэнергетические — импульсные методы штамповки листового металла

Импульсные виды листовой штамповки

Импульсные методы штамповки

М Магнито-импульсная штамповка

Штамповка импульсным магнитным полем

Штамповка листовая - Высоко энергетические импульсные методы

Штамповка магнитно-импульсная

Штамповка холодная листовая 275-288 Высокоэнергетические импульсных метод

Штамповка холодная объемная импульсные методы



© 2025 Mash-xxl.info Реклама на сайте