Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Термическая обработка чугунных деталей

Р а б и н о в и ч И. П., Термическая обработка чугунных деталей сельскохозяйственных машин, Машгиз. 1948.  [c.323]

Долговечность цепных передач в основном зависит от материала и термической обработки их деталей. Для обеспечения износостойкости и сопротивляемости ударным нагрузкам детали цепей и звездочки изготовляют из термически обработанных или цементуемых углеродистых или легированных сталей (60, 6.5Г, 20, 20Х и др.). Звездочки тихоходных передач (ц гй 3 м/с) при спокойных нагрузках можно изготовлять из серых чугунов (С4 21—40 и др.) с последующей закалкой.  [c.432]


Рекомендуемая термическая обработка чугунных изделий и ее примерное назначение (400). Режимы отжига отливок из серого чугуна (401). Режимы закалки чугунных деталей (401). Режимы отпуска закаленных чугунных деталей (403). Термическая обработка отливок из высокопрочного чугуна (404).  [c.539]

На основе полученных данных следует рекомендовать термическую обработку чугунных направляющих в вагонных буксах, а также использовать термически обработанный чугун для изготовления втулок парораспределительного механизма, клиньев фрикционных аппаратов автосцепки и других деталей, работающих в аналогичных условиях.  [c.219]

Дробеструйный наклеп применяется для обработки деталей, прошедших механическую и термическую обработку. Готовая деталь помещается в камеру специальной установки, где подвергается ударам дроби, выбрасываемой с большой скоростью из вращающегося диска или сопа под действием сжатого воздуха. Для наклепа стальных деталей используется чугунная или рубленная из проволоки стальная дробь, обычный размер дроби  [c.65]

Чугун. Серый, белый и ковкий чугун состав, особенности к область применения. Механические и технологические свойства чугуна. Термическая обработка чугуна. Применение чугуна для изготовления деталей кранов. Образование раковин, трещин и способы их распознавания.  [c.505]

Корпусные детали по условию жесткости изготовляют из материалов с высоким модулем упругости, допускающих совершенные формы, т. е. из чугуна и сталей без термической обработки. Термическая обработка крупных деталей затруднена, и она не повышает модуль упругости материала.  [c.626]

Детали, подготовленные под горячую сварку, подвергают нагреву до 500—700°С. Температура общего предварительного подогрева определяется размером-деталей, толщиной стенок, жесткостью конструкции, объемом наплавляемого металла и структурой чугуна. Общий подогрев свариваемых деталей ведется в электрических и газовых печах, а при единичных ремонтных работах — в специальных термических печах, ямах и горнах. Для общего нагрева, а также последующей термической обработки сваренных деталей используют горны и печи различного типа. На рис. 116 представлен горн, состоящий из металлического каркаса 1 и чугунной опоки 2 с колосниковой решеткой 3. Естественная тяга через колосниковую решетку обеспечивает такую скорость сгорания кокса, которая необходима для постепенного нагрева деталей.  [c.236]


В конструктивно-технологической группе деталей в качестве условий при выборе операций учитывают разновидности термической обработки, например для ступенчатых валов нормализацию, улучшение, закалку, отпуск и др. для корпусных деталей из чугуна — искусственное старение и т. д. Эти операции назначаются в технологический маршрут при выполнении условий, вытекающих из технических требований на изготовление детали. Условия, характеризующие шероховатость обрабатываемых поверхностей, определяются характером производства. Например, при обработке наружных цилиндрических поверхностей валов выполнение условия, обе-  [c.97]

Различные материалы деталей трибосистем могут подвергаться модификации различными методами с использованием соответствующих технологических процессов. Образование твердого износостойкого слоя на трущихся поверхностях деталей, изготовленных из средне- и высокоуглеродистых сталей, ковкого, серого и высокопрочного чугуна, обеспечивается соответствующей термической обработкой (закалкой и последующим отпуском).  [c.235]

Термическая обработка легированных серых чугунов может в различных случаях применяться для снятия напряжений, улучшения обрабатываемости, повышения механических и других свойств. Для низколегированных чугунов применяется такая же термообра- ботка, как и для обычных серых. Ниже приводятся некоторые примеры термической обработки деталей из легированного серого чугуна.  [c.544]

Глава XI Технология термической обработки металлов- содержит справочные данные по термической и химико-термической обработке деталей из стали, чугуна и частично цветных металлов и сплавов (по ряду алюминиевых, магниевых и других сплавов сведения по термической обработке помещены в т. 4). В эту главу включены также технологические характеристики основного и вспомогательного оборудования термических цехов.  [c.724]

При составлении кинематической схемы с натуры марка материала обычно не определяется, и в спецификации указывается лишь, сталь", чугун , бронза", пластмасса" и т. д., в графе термическая обработка" для стальных деталей указывается сырая" закалённая" или цементированная". Сырыми" считаются детали твёрдостью Яд< 350 кг[мм (или при <37), закалёнными —при твёрдости = 37 45. При твёрдости > 45  [c.428]

Важной особенностью чугуна является то, что он применяется для изготовления как мелких деталей весом в несколько сот граммов (например, поршневых колец), так и весьма крупных деталей весом до 150 т в одной отливке (например, шаботы ковочных молотов, станины и рамы прессов и прокатных станов) как деталей с толстыми стенками (до 1000 жж), так и деталей, имеющих тонкие стенки (3—5жж). Детали могут применяться как в литом состоянии, так и после соответствующей термической обработки.  [c.159]

Серый мартенситный чугун (табл. 1) применяют в случаях, когда деталь, подвергающаяся абразивному износу, имеет большой объем сложной механической обработки. Он обрабатывается резанием несравненно легче, чем отбеленный и белый. Образование мартенсита достигается за счет легирования и термической обработки.  [c.171]

Высокохромистый износостойкий чугун (табл. 9) выплавляют, как правило, в электродуговых или индукционных высокочастотных печах с кислой или основной футеровкой. Шихта состоит из низкокремнистого передельного чугуна, собственного возврата и ферросплавов. Если используется низкоуглеродистый феррохром, часто приходится дополнительно науглероживать металл графитным боем. Чугун предназначен для изготовления деталей, работающих в условиях абразивного износа. Его важнейшей особенностью является возможность варьирования износостойкостью и технологическими свойствами (обрабатываемостью резанием, литейными свойствами) путем подбора соответствующих химического состава и режима термической обработки.  [c.176]

Режимы термической обработки некоторых чугунных деталей оборудования  [c.141]

К сварным соединениям чугунных деталей предъявляются следующие требования возможность обработки обычным режущим инструментом, прочность металла шва должна быть не ниже прочности основного металла, зона термического влияния (часть основного металла, которая в процессе сварки поддается термическому влиянию) должна быть минимальной, равнопрочность соединения, однородность наплавленного и основного металла детали по химическому составу и структуре.  [c.105]


Дробеструйная обработка применяется для восстановления жесткости пружин, торсионов и рессорных листов. Сущность ее заключается в том, что поток дроби (стальной, чугунной, стеклянной) диаметром 0,6... 1,2 мм направляется на обрабатываемую деталь со скоростью до 100 м/с, в результате чего поверхностный слой наклепывается. Вследствие пластической деформации в поверхностном слое детали возникают не только параллельные, но и ориентированные в разных плоскостях и. направлениях несовершенства кристаллического строения - дислокации. Повышение плотности дислокаций служит препятствием к их перемещению, от этого возрастает реальная прочность материала. Кроме того, образуется большое количество линий сдвига, дробятся блоки мозаичной структуры, что упрочняет поверхностный слой металла на глубину 0,2...0,6 мм. Шероховатость поверхности при этом достигает значений Rz 40...20 мкм. Предварительная химико-термическая обработка и закалка ТВЧ повышают глубину наклепа в 2,0...2,5 раза, что обеспечивает объемное воздействие механической обработки на материал детали.  [c.544]

Предварительный нафев деталей при сварке составляет 500.. .700 °С с последующей после сварки термической обработкой изделия по режиму отжига при 800...900 °С с выдержкой 1,5...2 ч и охлаждению со скоростью не более 75 °С/ч. Сварные швы по содержанию углерода и кремния близки к их количеству в чугуне, что обеспечивает необходимые механические свойства сварных соединений с металлом шва, имеющим структуру с глобулярным фафитом.  [c.356]

Сварку таких чугунов без предварительного нафева деталей применяют для исправления мелких дефектов отливок и при ремонте деталей и изделий с выполнением швов как до термической обработки отливок, так и после нее.  [c.365]

Термическая обработка чугунных деталей лорежущих станков, молотов, редукторов  [c.141]

Применение чугуна с шаровидным графитом для изготовления деталей турбин. Изготовляют весьма ответственные детали турбин, работающие в условиях ударных и знакопеременных нагрузок лопатки направляющих аппаратов гидротурбин, рычаги, поршни рабочего вала, регулирующие кольца, крестовины рабочего колеса, корпуса паровых турбин, корпуса клапана, основания гидротурбин Пельтона, подпятники турбин Каплана и др. Наиболее характерными деталями гидротурбин, отливаемых из чугуна с шаровидным графитом, являются лопатки направляющего аппарата. На одну турбину устанавливается 24 лопатки весом 1,8 т. каждая. Общая длина одной лопатки 3045 мм, ширина 780 мм, максимальный диаметр сплошной цапфы равен 218 мм, а минимальная толщина пера — 40 мм. Лопатки отливают из чугуна с шаровидным графитом и ферритной структурой металлической основы, получаемой после термической обработки отливок по следующему режиму нагревание до 920—940° С со скоростью 80—100°С/ч, выдержка при этой температуре в течение 3 ч, охлаждение до 700— 720° С, выдержка при этой температуре в течение 16 ч, дальнейшее охлаждение с печью. В результате такой термической обработки чугун приобретает ферритную структуру и следующие механические свойства Ов не менее 40 кПмм , Oj не менее 25 кПмм , б не менее 8%, не менее 3 кГм1см , НВ 176—250.  [c.163]

При термической обработке чугунных отливок применяют отжиг, нормализацию, закалку, отпуск, а также химико-термическую обработку (см, раздел Повышение долговечности деталей машин способами упрочняющей технологии ). Рекомендуемая термическая обработка чугун1гых отливок и режимы ее приведены в табл, 322.  [c.421]

Таблица 17. Режимы стабилиаирующей термической обработки чугунных литых деталей Таблица 17. Режимы стабилиаирующей <a href="/info/70664">термической обработки чугунных</a> литых деталей
Для общего нагрева, а также последующей термической обработки сваренных деталей, используются горны и печи различного типа. На рис. 108 представлен горн, состоящий из металлического каркаса и чугунной опоки с колосниковой рещеткой. Естественная тяга через ко-  [c.240]

В зависимости от полноты воздействия термической обработки чугуна на деталь (отливку) закалка может быть объемной или поверхностной, В зависимости от режима охлавдения различают закалку при непрерывном охлавдении и ступенчатую, или изотермическую, закалку. В первом случае обычно получается мартенситная структура, во втором - бейнитная. Неполной закалкой называют такой режим, который обеспечивает формирование микроструктуры металлической основы, состоящей как из продуктов закалки (мартенсита, бейнита), так и из перлита и феррита.  [c.702]

Сочетание высокой прочноегп и пластичности этих чугуиов позволяет изготавливать из них ответственные изделия. Так, коленчатый вал легковой машины Волга изготавливают из высокопрчного чугуна, имеющею состав 3,4—3,6% С 1,8-2,2% Si 0,96—1,2% Мл 0,16-0,30% Сг <0,01% S <0,06% Р и 0,01—0,03% Mg. Чугун со столь узкими пределами по элементам и низким содержанием серы и фосфора выплавляют не в вагранке, а в. электрической печи. Это обстоятельство, а также применение термической обработки приводит к получению еще более высоких свойств, чем это указано л табл. 24, а именно ац = 62-н65 кгс/мм б = 8- -12% и твердость НВ 192—240. Хотя этот чугун но механическим свойствам и уступает стали констру - тивная прочность коленчатого вала из такого чугуна может быть выше, что в целом уменьшит массу машины. Из чугуна, обладающего лучшими, чем у стали, литейными свойствами, можно литьем (дешевым способом) изготавливать изделия сложной конфигурации (с внутренними полостями и т, п,), обладающие лучшим сопротивлением разнообразным механи-ческн. воздействиям, чем более простые по форме кованые детали, Дру ими словами, в ряде случаев деталь сложной конфигурации из менее прочного материала (чугуна) конструктивно оказывается более прочной, простой по конфигурации детали из более прочного материала (стали).  [c.218]


Применяемые заготовки также влияют на выбор операций и их последовательность в технологическом маршруте. Например, в условиях мелкосерийного и среднесерийного производства для изготовления валов применяют горячекатаный прокат, штамповки, изготовленные на молотах, горизонтально-ковочных и ротационно-ковочных машинах и др. Каждому виду заготовки соответствуют свои типовые формулировки операций, включение той или иной операции термической обработки, например искусственного старения д.ля литых чугунных корпусов. Вид заготовок влияет на содержание черновых опер зций, связанных с удалением напуска. В свою очередь, использование индивидуальных простейших заготовок или прогрессивных, приближающихся к контуру детали, а также комплексных заготовок для группы деталей определяется программой выпуска, конструкцией  [c.95]

Лазерная обработка успешно применяется для поверхностного упрочнения отливок из серого, ковкого и высокопрочного чугун()в. Благодаря оплавлению поверхности и образованию ледебуритной эвтектики (отбел чугуна) и мартенеhthoio подслоя твердость на поверхности достигает 7500—9000 МПа Частичное оплавление ухудшает чистоту поверхности. При отсутствии оплавления, твердость [юсле нагрева лазером повышается в результате закалки тонкого поверхностного слоя. Лазерная обработка повышает износостойкость чугунных деталей в 8—10 раз. Лазер может быть использован и для химико-термической обработки, В этом случае перед обработкой лучом лазера на поверхность наносят обмазки или порошки, содержащие насыщающие элементы (А), Сг, С, N, В и т. д.).  [c.226]

Для изготовления деталей, работающих в условиях трения и изнашивания при высоких температурах, применяют высокохромистые (до 34% хрома) и хромоникелевые чугуны. При этом жаростойкость достигается также за счет легирования чугуна кремнием (5-6% Si) и алюминием (1-2% А1). Свойства чугунов ь нужном направлении можно в значитсл1эНой степени изменять соответствующей термической обработкой.  [c.21]

Крышка турбины, опора пяты, верхнее и нижнее кольца относятся к стационарным деталям направляющего аппарата. Состоят они, как правило, из нескольких частей (секторов), габариты которых определяются условиями транспортировки и производства. Число секторов принимают четным, чтобы иметь сквозные меридианные разъемы, необходимые при обработке стыков. Выполняются эти детали сварными из проката МСтЗ, реже литыми из стали 20ГСЛ или ЗОЛ. Можно применять высокопрочный чугун ВПЧ 40-5, хорошо зарекомендовавший себя на Камской ГЭС. Выбор материала зависит от напряженного состояния деталей и условий производства. В последние годы в отечественном гидротурбостроении преимущественное применение нашли сварные конструкции. Они отличаются наименьшей затратой материалов для заготовок и наименьшей массой, требуют меньших припусков на обработку, позволяют точно выдерживать толщину стенок, в них отсутствуют внутренние и поверхностные дефекты, неизбежные в отливках, их фактическая прочность больше соответствует расчетным значениям. Общим недостатком сварных конструкций является наличие остаточных напряжений и вызываемых ими деформаций. Для устранения этих напряжений обязательно применение термической обработки (отпуска и нормализации) после сварки. Допустимые деформации сварных деталей должны находиться в пределах припусков на обработку.  [c.96]

Серый чугун. Содержит 3,2—3,5 % углерода, кремний, марганец, фосфор, серу. Предел прочности при изгибе серого чугуна составляет 200—450 МПа. Кривые намагничивания серого чугуна II ковкого чугуна, являющегося разновидностью серого, показаны на рис. 9-23. Серый чугун применяется для отливок корпусов электрических машин, крепежных деталей, плит и пр. Чугунные отливки, особенно больших размеров, не требуют дальнейшей термической обработки, однако е некоторых случаях огжиг изделия является полезным. Валы, вращающиеся детали быстроходных электрических машин, станины машин, подверженных вибрации и толчкам, не могут изготовляться из чугуна. Для указанных изделий необходима сталь, достаточно хорошо удовл1етво-ряющая повышенным требованиям в отношении механической прочности.  [c.290]

Кроме того, при наиболее распространенном методе определения износа — микрометраже деталей — не учитывается так называемый отрицательный износ , выражающийся в изменении геометрических размеров чугунных отливок после ликвидации внутренних напряжений. При замере микрометром износа таких деталей, как цилиндры двигателей, иногда приходится встречаться с весьма странным явлением, когда диаметр замеряемого цилиндра не увеличивается после работы двигателя и износа, а, наоборот, уменьшается. Происходит это от ликвидации разного рода напряжений в поверхностном слое, возникающих в результате механической и термической обработки деталей.  [c.65]

Изнашивание значительно уменьшается 1ри термической и химико-термической обработке детален (поверхностной закалке, цементации, цианировании, азотировании, диффузионном хромировании, борировании, алитировании, силицнровании, сульфидировании и др.), нгшлавке и плазменном напылении деталей твердыми сплавами, а также при гальваническом нанесении твердых покрытий (хромировании). Износостойкость чугунных деталей повышают создание ,) на поверхностях грения отбеленной корки.  [c.163]

От редакции. Настояа1ая глава не исчерп . -вает всех данных из области современной химии, применяемых в машиностроении. Ряд дополнительных данных содержится в главах 2-го тома (физико-химические и механические свойства чистых металлов, Теория и расчеты процессов горения) б-го тома (Чугун, Сталь, Цветные металлы и сплавы),5-го тома (Электрические и химико-механические способы размерной обработки металлов. Технология термической и химико-термической обработки металлов, Технология покрытий деталей машин, Технология производства металлоке-рамнческих деталей). Подробные данные по ряду вопросов можно найти в приведенных ниже литературных источниках. Так, например, общие законы химии и свойства химических элементов и их соединений изложены в источнике [29] основные положения органической химии и общие свойства органических соединений — в (9], [38] строение атома, свойства элементарных частиц, теория  [c.315]

Наиболее распространенные контролируемые атмосферы и их применение для защиты стали от окисления и обезуглероживания приведены в табл. 6 и 7. Для таких видов термической обработки, как закалка, отжиг и нормализация, применяют эндотермическую контролируемую атмосферу (20% СО, 40% Hj, 40% Nj), получаемую в генераторе пропусканием смеси углеводородных газов и воздуха через катализатор при температуре 1000—1200° С. При отсутствии контролируемых атмосфер изделия для нагрева упаковывают в ящики с отработанным карбюризатором, в пережженный асбест, чугунную стружку (г-еокисленную) или наносят на деталь (инструмент) обмазку. Так. например, инструмент из быстрорежущей стали с целью предохранения его от обезуглероживания погружают перед нагревом в насыщенный раствор буры, которая при высокой температуре образует защитную пленку, или предварительно подогретый до 800—850 С инструмент перед окончательным нагревом покрывают порошком обезвоженной буры.  [c.121]


Примечания I. Характеристика ведущего круга для всех случаев шлифования стальных и чугунных деталей — 15А16ТВ. 2. При шлифовании на автоматизированных линиях, где один рабочий обслуживает несколько станков (без автоподналадчика), число операций может быть увеличено на одну-две при осуществлении всех операций на одном станке число их можно уменьшить на одну по сравнению с табличными данными. В этих случаях рекомендуемую нормативами удвоенную глубину шлифования на последних одной-двух операциях следует сохранить, а на первых — соответственно изменить, оставив неизменным суммарный припуск. 3, Если технологический процесс предусматривает шлифование детали до и после термической обработки, то при расчете числа операций для незакаленных деталей требуемой является точность, с которой деталь поступает на термическую обработку для термически обработанных деталей исходной является точность, с которой детали возвращаются после термической обработки.  [c.405]

Рекомендуемая терлшческая обработка чугунных изделий и ее примерное паэначепне (422). Режимы отжига отливок из серого чугуна (423). Режимы закалки чугунных деталей (423). Режимы отпуска закаленных чугунных деталей (425). Термическая обработка отливок из высокопрочного чугуна (426).  [c.544]

Для деталей сложной формы применяют стальное и чугунное литье вместо поковок и штамповок. При этом толщину стенок отливок нужно ограничивать [16, 91], так как увеличение толщины стенок влечет за собой, при прочих равных условиях, значительное снижение пластичности и вязкости металла срединной зоны, а также и остальных механических свойств. Это происходит вследствие получения в срединной -зоне крупнокристаллитного строения и межкристаллитных пор. Особенно важно следить за толщиной стенок деталей, изготавливаемых из хромистых и аустенитных сталей, не имеющих фазовых превращений, так как в них отсутствует процесс вторичной кристаллизации. В этих сталях [16, 28, 123] зерно, полученное при первичной кристаллизации, остается без изменения. Любая последующая термическая обработка не может изменить величину зерна [90, 91, 94, 100].  [c.431]

В сравнении с КЧ высокопрочный qyryH обладает лучшими литейными и более высокими механическими свойствам] , возможностью во многих случаях обходиться без термической обработки, а также возможностью применения для деталей любых массы и размеров. Поэтому отливки из КЧ в последние годы заметно вытесняются отливками из высокопрочного чугуна, особенно там, где это оказывается экономически целесообразно.  [c.79]

В этой книге рассматрявается производство черных металлов в последовательности современной технологической схемы производства 1) выплавка чугуна из железной руды — доменное производство 2) прямое получение желюа и металлизованного сырья 3) выплавка стали из чугуна, металлического лома 4) обработка стальных слитков и заготовок на прокатных станах и получение готовых изделий и полуфабрикатов. Обычно черными металлами называют железо и сплавы железа с различными элементами. Основным элементом, придающим железу разнообразные свойства, является углерод. Сплавы с содержанием углерода до 2,14 % называют сталями, а сплавы с более высоким содержанием углерода — чугунами. Помимо углерода, в состав стали и чугуна входят различные элементы. Легирующие элементы улучшают, а вредные примеси ухудшают свойства железных сплавов. К легирующим элементам относятся марганец, кремний, хром, никель, молибден, вольфрам и др. К вредным примесям — сера, фосфор, кислород, азот, водород, мышьяк, свинец и др. В зависимости от содержания легирующих сталь или чугун приобретают различные свойства и могут быть использованы в той или иной области промышленности. Так, например, инструментальные стали с высоким содержанием углерода используют для изготовления режущего обрабатывающего инструмента. При повышении содержания хрома и никеля стали приобретают антикоррозионные свойства (нержавеющие стали). Стали с повышенным содержанием кремния используют в электротехнике в виде трансформаторного железа и т. п. Чугун с высоким содержанием кремния используют в литейном деле. Для деталей, выдерживающих повышенные нагрузки, применяют высокопрочные чугуны, содержащие хром, никель и т.д. Металл, используемый в промыш-деииости, сельском хозяйстве, строительстве, на транспорте и т.д., имеет различную форму, размеры и физические свойства. Придание металлу требуемой формы, необходимых размеров и различных свойств достигается обработкой слитков стали давлением и последующей термической обработкой. Для получения различной формы изделий применяют свободную ковку, штамповку на молотах н прессах, листовую штамповку, прессование, волочение и прокатку. На прокатных станах обрабатывается до 80 % всей выплавляемой стали, на них производят листы, трубы, сортовые профили, рельсы, швеллеры, балки и т. п.  [c.8]

Сг/льфа<5 роааные — насыщение поверхностных слоев стальных и чугунных деталей серой для улучшения износостойкости и противозадирных свойств трущихся поверхностей. Детали перед сульфидированием тщательно обезжиривают, промывают горячей водой и подогревают до 150—200° С. Затем их помещают в расплавы солей, содержащие сернистые соединения. Расплавы, применяемые для сульфидирования, могут иметь различные составы. Например, для сульфидирования при 540— 560° С применяют ванну, содержащую 90—95% желтой кровяной соли [К4ре(СЫ)б], 5—10% едкого натра (NaOH) и 3—5% пирита (FeS). В случае, когда в состав ванн для сульфидирования входит группа N, происходит одновременное насыщение поверхностного слоя серой, азотом и углеродом. Химико-термической обработке в таких ваннах подвергают клапаны автомобильных двигателей, детали насосов и паровых машин.  [c.157]


Смотреть страницы где упоминается термин Термическая обработка чугунных деталей : [c.26]    [c.58]    [c.339]    [c.536]    [c.182]    [c.2]   
Смотреть главы в:

Справочник механика машиностроительного завода Технология ремонта Том 2 Изд.2  -> Термическая обработка чугунных деталей



ПОИСК



Детали Термическая обработка

Термическая обработка деталей из чугуна

Термическая обработка чугунаЮ

Термическая чугунных

Термическая чугунов

Чугуны — Обработка



© 2025 Mash-xxl.info Реклама на сайте