Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Движение частицы (точки) по связи с трением

Если эта связь сильнее, чем прочность материала одного из тел, то при дальнейшем движении частица металла оторвется от одного тела и перейдет на другое, производя бороздящее действие по поверхности трения.  [c.247]

Уравнения (3.13) впервые получены Леонардом Эйлером и называются уравнениями Эйлера. Теория движения идеального газа математически хорошо разработана и, как указывалось, во многих задачах дает удовлетворительную картину действительных движений. В то же время теория идеального газа не пригодна для объяснения явления поверхностного трения на поверхности обтекаемого тела, сопротивления формы, прилипания частиц газа к граничной твердой поверхности и т. д. В частности, эта теория приводит к парадоксальному результату тело, равномерно движущееся в безграничном газе со скоростью, меньшей скорости звука, не испытывает никакого сопротивления (парадокс Даламбера). При равномерном движении тела в газе со скоростью, большей скорости звука, образование ударных волн приводит к появлению сопротивления тела, называемого волновым сопротивлением. Хотя это явление изучается в рамках модели идеальной жидкости, само образование ударной волны связано с влиянием вязкости и, таким образом, в определении волнового сопротивления вязкость учитывается косвенным образом.  [c.110]


Кроме тепловой энергии отдельные частицы или моли переносят также свою кинетическую энергию, которая при их торможении за счет трения преобразуется в соответствующее количество теплоты. Поскольку явление переноса молей или частиц тесно связано с характером и режимом движения жидкости или газа, а также с геометрическими формами и размерами обтекаемой поверхности, конвективный теплообмен представляет собой сложное явление, зависящее от многих факторов. Наиболее сложная картина движения наблюдается непосредственно возле стенки, она-то и определяет теплообмен между потоком и стенкой.  [c.5]

Вернемся к распределению скоростей в смазочном слое. Из формулы (8.36) следует, что на участке х > х , где dp/dx <0, возможно такое сочетание параметров, при котором >0. Это значит, что движение происходит в сторону, противоположную направлению скорости Uq, т. е. имеет место возвратное течение. Распределение скоростей в различных сечениях для этого случая показано на рис. 8.10. Образование возвратного течения сопровождается отклонением (отрывом) основного потока от твердой поверхности и объясняется действием обратного перепада давления. На участке от точки х = I (см. рис. 8.8) до х, = / (2 + где достигается максимум давления, жидкость движется в сторону нарастающего давления, преодолевая, кроме того, силу трения. В связи с этим перемещаться вместе с подвижной пластиной могут лишь частицы, обладающие достаточной кинетической энергией частицы, расположенные ближе к неподвижной пластине, имеют малый запас кинетической энергии, под действием обратного перепада давления начинают двигаться в противоположную сторону и образуют возвратное течение. Граничным для зоны этого течения будет сечение отрыва (ЕЕ на рис. 8.10), в котором выполняется условие  [c.312]

Первый из них ассоциируется с созданием и разрывом адгезионных связей в точках контакта элементов подвижных сопряжений. Сила, необходимая для разрыва связей, известна как адгезионная (молекулярная) составляющая силы трения. Механизм образования адгезионных связей зависит от свойств контактирующих тел и условий трения. При скользящем контакте металлических поверхностей он связан с разрушением мостиков сварки в области взаимодействия. Для резин и резиноподобных полимеров диссипация энергии имеет место в процессе термического перехода молекулярных цепей от одного равновесного состояния к другому. Адгезионная компонента силы трения зависит также от свойств поверхности обоих контактирующих тел. Интересный подход к моделированию адгезионного взаимодействия в скользящем контакте развит в работах [12, 171], в которых рассмотрено движение третьего тела - среды между взаимодействующими поверхностями, свойства которой зависят от механических характеристик поверхностей контактирующих тел, граничных пленок, свойств частиц, отделившихся с поверхностей в процессе трения, и т. д. Метод расчёта адгезионной составляющей силы трения при качении изложен в 2.7.  [c.132]


Физическая причина возникновения циркуляции связана с наличием трения (вязкости) в жидкости. Как уже неоднократно упоминалось ранее, в реальной жидкости, обладающей внутренним трением, частицы, проходящие в непосредственной близости к поверхности профиля, образуют тонкий пограничный слой. В этой области резко проявляется неидеальность жидкости, движение жидкости будет вихревым, причем интенсивность вихрей может достигать больших значений, так как скорость частиц в пограничном слое резко меняется от нуля на поверхности обтекаемого тела до величины порядка скорости на бесконечности на внешней границе слоя. Так, например, на крыле самолета максимальная толщина пограничного слоя не превосходит нескольких сантиметров, в то время как разность скоростей на поверхности крыла и на внешней границе пограничного слоя достигает величины 100—200 лг в секунду.  [c.277]

В связи с эти.м приобретают большое значение приближенные методы решения задач пограничного слоя, среди которых распространенными являются методы, основанные на использовании уравнений пограничного слоя в интегральной форме. К таким уравнениям относятся уравнение количества движения, уравнение кинетической энергии, уравнение энергии. Приближенность этих методов заключается в отказе от удовлетворения дифференциальных уравнений пограничного слоя для каждой отдельной частицы жидкости. Уравнения пограничного слоя удовлетворяются только в среднем по толщине пограничного слоя ери выполнении граничных условий и контурных связей на стенке и при переходе к внешнему потоку. С точки зрения инженерной практики такой подход оправдывается тем, что часто прп проектировании различных технических устройств нет необходимости в детальном знании профилей скорости и температуры достаточно иметь данные о распределении коэффициентов трения и теплообмена по обтекаемой поверхности или о распределении толщины пограничного слоя и интегральных его характеристик.  [c.52]

Для большинства задач газовой динамики, где требуется учесть влияние вязкости газа, можно пользоваться теорией пограничного слоя и тем самым освободиться от труднейшей задачи непосредственного интегрирования общих уравнений движения вязкого газа. Теория пограничного слоя позволяет определить силы поверхностного трения и теплопередачу и установить связь между течениями идеального и вязкого газа около одной и той же границы. Теория пограничного слоя позволила установить, что вязкость газа при больших скоростях течения не оказывает заметного влияния на поле давлений. Таким образом, в пределах применения теории пограничного слоя давление можно определить по теории течения идеального газа. Но необходимо иметь в виду, что существуют течения, в которых не образуется тонкий пограничный слой вязкого газа. Граничные условия разреженных газов отличаются от граничных условий идеального и вязкого газа. Касательная, составляющая скорости таких газов, несколько ограничивается стенкой, но здесь имеет место скольжение частиц газа относительно стенки. Теории течения разреженного газа посвящена глава XI.  [c.135]

В пограничном слое часть энергии частиц воздуха необратимо теряется, переходя в тепло. Но в этом случае причина потерь энергии иная внутреннее трение в воздухе. Если механические потери в пограничном слое являются причиной сопротивления трения, то механические потери, происходящие при сверхзвуковой скорости движения, являются источником нового вида сопротивления, которое называется волновым. Конечно, сравнение здесь чисто внешнее, так как механизм передачи энергии различный. Волновое сопротивление возникает на скачке уплотнения и связано с ним. При этом говорят, что наступил волновой кризис. При волновом кризисе сопротивление резко возрастает, подъемная сила уменьшается, могут возникнуть вибрации, опасные для прочности отдельных частей или ракеты в целом.  [c.84]


Законы трения. До сих пор мы принимали, что связь оказывает реакцию по прямой, служащей основанием градиента функции /—О ( 118) эта реакция по направлению вполне определялась, когда нам было дано аналитическое уравнение связи. Но может случиться, что связь оказывает реакцию на материальную частицу также и в плоскости, перпендикулярной к градиенту тогда законы, управляющие такой реакцией, не могут быть найдены только из аналитической формы связи, а должны быть определены из других источников, например, при помощи наблюдений и опыта другими словами, реакции такого рода представляют собой, собственно говоря, заданные силы. К ним принадлежит и так на-31,1ваемая с и л а трения. Законы треиия относятся к взаимодействию двух тел, соприкасающихся друг с другом и движущихся друг относительно друга принимая, что материальная частица представляет собой весьма малое тело, мы можем результаты опытов над трущимися телами приложить и к материальной частице. Когда движение частицы по данной поверхности или линии сопровождается трением, то поверхность или линия называются шероховатыми. Законы трения для материальной частицы, находящейся на неподвижной шероховатой поверхности, следующие  [c.225]

В результате Л. Б. Левенсон приходит к ряду выводов. Проблема сил инерции существует, ибо ученые до сих пор не пришли к единому мнению об их сущности. Силы могут быть активными и реактивными к последним относятся силы трения, сопротивление среды, силы упругости и силы инерции. Своеобразие сил инерции заключается в следующем 1) по происхождению и действию сила инерции стоит особняком, не являясь ни внешней, ни внутренней (в узком понимании) силой 2) возникающие в одиночку (не парами) силы инерции должны быть уравновешены 3) при отсутствии физической связи, передающей ускорение, сила инерции, хотя и существует как кинематическая реакция материи, но проявить свое действие в ясном виде не может 4) при свободном движении материальной точки из-за полного отсутствия связей действие силы инерции также не может явно проявиться тогда ускоряющая сила действует непосредственно на каждую частицу тела, минуя связи, и сообщает всем частицам равные и параллельные ускорения.  [c.49]

Данная особенность процессов возникновения теплоты за счет трения связана с молекулярной природой теплоты. Характерная особенность тепловой энергии заключается в том, что это есть эне,ргия хаотического неорганизованного движения мельчайших частиц вещества. Возникшее при определенных условиях организованное, упорядоченное движение легко нарушается, как только перестают действовать эти условия, и переходит при всех обстоятельствах в хаотическое неправильное движение, так как такое движение является наиболее (вероятным. Поскольку беспорядочное тепловое движение частиц более вер01ятно, чем упорядоченное, то все виды энергии легко переходят в теплоту. Превращение хаотического теплового движения как более вероятного в упорядоченное движение как менее вероятное возможно лишь при определенных условиях. Самопроизвольно первый вид движения не переходит во второй.  [c.124]

Для установления связи между напряжением турбулентного трения т и осредненными Kopo TfiMH движения Прандтль исходит из следующей схемы пульсационного движения в турбулентном потоке. Пусть частица жидкости А (рис. XII. 10), имея поперечную пульсацию скорости продвинется в направлении этой пульсации на малое расстояние V и займет положение Ль принеся в эту точку избыток скорости  [c.177]

На участке СК dpidx > О и частицы движутся в направлении возрастания давления. В идеальной жидкости это приводит лишь к убыванию кинетической энергии и восстановлению полного давления, достигаемого в точке Ki- В реальной жидкости часть кинетической энергии затрачивается на компенсацию работы сил трения, оказывающих тормозящее действие. В связи с этим частицы, двигавшиеся в пограничном слое и имевшие малый запас кинетической энергии, начиная с некоторого сечения, проходящего через точку О (рис. 8.27), не могут уже преодолевать совокупное действие обратного перепада давления и трения — они в этом сечении останавливаются, а частицы, двигающиеся по более удаленным от тела траекториям, отклоняются в сторону внешнего потока. Часть жидкости, расположенная ниже точки О, под действием положительного градиента давления получает возвратное движение. Это явление и называют отрывом пограничного слоя.  [c.348]

Рассмотрим в качестве примера потенциальное бесциркуляционное обтекание круглого цилиндра ( 4 гл. 7). Начиная от передней критической точки /<1, давление убывает dpldx < 0), а скорость возрастает вплоть до точки С, за которой начинается обратное изменение давления и скорости. Жидкие частицы на участках пути вблизи границы Ki испытывают ускорение, обусловленное падением давления в направлении движения, и их кинетическая энергия возрастает. В идеальной жидкости этому ускорению ничто не препятствует, но в реальной движение тормозится трением, развивающимся благодаря прилипанию жидкости к твердой поверхности и образованию пограничного слоя. Все же благодаря прямому перепаду давления ускорение в нем наблюдается, по крайней мере, до точки С. Иначе обстоит дело на участках С/<2. Здесь dpldx > 0 и частицам приходится двигаться против нарастающего давления, В идеальной жидкости это приводит лишь к убыванию кинетической энергии и восстановлению полного давления, достигаемого в точке К2- В реальной жидкости часть кинетической энергии должна быть затрачена еще на компенсацию работы сил трения, оказывающих тормозящее действие. В связи с этим частицы, двигавшиеся в пограничном слое и имевшие малый запас кинетической энергии, начиная с некоторой точки О (рис. 186), не могут уже преодолевать совокупное действие обратного перепада давления и трения они в этом сечении останавливаются, а частицы, двигающиеся по более удаленным от тела траекториям, отклоняются в сторону внешнего потока. Часть жидкости, расположенная ниже точки О, под действием обратного градиента давления получает возвратное движение. Это явление и называют отрывом пограничного слоя. Структура течения и конфигурация линий тока вблизи точки отрыва показаны ка рис. 186.  [c.382]


Простой маятник. Тяжелая точка движется без трения по окружности в вертикальной плоскости. Такое движение можно осуществить, например, заставив бусинку скользить по гладкой проволоке, изогнутой в форме окружности радиуса а. Или же можно частицу соединить с концом невесомого стержня длины а, другой конец которого шарнирно закреплен в точке О, так что стержень может свободно качаться в вертикальйой плоскости около этой точки. Положение частицы на окружности будет определяться углом 6, отсчитываемым от наинизшей точки окружности. Декартовы координаты частицы х, у будут связаны с лагранжевой координатой 0 формулами  [c.59]

Вскоре после опубликования работы Навье в 1829 г. было сделано устное сообщение в Парижской Академии наук об исследованиях Пуассона общих уравнений равновесия и движения упругих тел и жидкости. Эти исследования Пуассона были опубликованы в 1831 г. ). В первом параграфе своего большого мемуара Пуассон различает два вида сил 1) силы притяжения, не зависящие от природы тел, пропорциональные произведению их масс и обратно пропорциональные квадрату расстояния между ними, и 2) силы притяжения или отталкивания, зависящие в первую очередь от природы частиц и количества содержащейся в них теплоты интенсивность этих сил весьма сильно убывает с увеличением расстояния между частицами. Весь мемуар Пуассона по существу посвящён вычислению механического эффекта именно. вторых сил и выводу уравнений равновесия упругих тел ( 3), уравнений равновесия жидкости с учётом капиллярного натяжения ( 5) и уравнений движения жидкости j учётом внутреннего трения жидкости ( 7). При выводе соотношений, связывающих проекции соответственных сил, представляющих по современной тер-минологии нормальные и касательные напряжения на трёх взаимно лерпендикулярных элементарных площадках, с производными по координатам от проекций вектора скорости, используются соответственные соотношения для напряжений в упругом теле с помощью следующих рассуждений. Общий промежуток времени t делится на п равных малых промежутков времени t. В первый интервал времени t после воздействия внешних сил жидкость смещается как упругое тело, поэтому распределение напряжений будет связано с распределением смещений так же, как и в упругом теле. Если внешние силы, вызы вавшие смещение, перестают действовать, то частицы жидкости быст ро приходят в такое расположение, при котором давление по всем направлениям становится одинаковым, т, е. касательные напря жения исчезают. За это время перераспределения расположения частиц происходит, таким образом, переход состояния напряжений, отвечающего упругому деформированию, в состояние напряжений давлений, отвечающее состоянию равновесия жидкости. Если же причина сме щения продолжает своё действие и в течение второго интервала времени, то, предполагается, что различные малые смещения будут происходить независимо от предшествующих и что новые смещения  [c.17]

Если теперь мы спросим, насколько отличаются действительные течения жидкости с очень небольшой вязкостью (например, как у газов или воды) от тех движений, которые получаются в предположении жидкости, совершенно не обладающей трением, то оказеявается, что влияние вязкости у таких жидкостей сказывается, главным образом, только в тонком слое у пограничной поверхности жидкости и твердого тела. Это происходит потому, что в этом слое, так называемом пограничном слое Прандтля, имеет место очень быстрое возрастание скорости, которому пропорциональны силы трения (т. II, глава XVI). 6 то время как в случае идеальной жидкости происходит скольжение жидкости по пограничной поверхности, каждая действительная жидкость, какой бы малой вязкостью она ни обладала, прилипает своими частицами, сопри-касаюшимися с твердым телом, к последнему. Но так как в жидкости, текущей около твердого тела и обладающей малым внутренним трением (например, вода в противоположность глицерину), значительные скорости (такие же, как если бы жидкость была идеальной) обнаруживаются уже в самом незначительном расстоянии от твердого тела, то, следовательно, переход к нулевой скорости около самого тела должен происходить в очень тонком слое это же, как было сказано, связано с наличием больших сил трения, которые в указанном слое достигают порядка величины градиента давления.  [c.98]

Внутреннее трение может быть только трением скольжения в этом случае поверхность трения разделяет два слоя, двкжуш,иеся в одном направлении с разными скоростями (фиг. 10). В зависимости в состояния поверхности трущихся тел в настоящее время различают четыре вида трения скольжения сухое, полусухое, полужидкое. С у X и м трением называется трение на поверхностях, свободных от всяких посторонних веществ таким образом, можно говорить о трении, например, железа по меди, дерева по камню и т. п., когда вступают во взаимодействие частицы самих трущихся тел. Такие чистые поверхности мол<но получить лишь лабораторным путём, в обычных условиях поверхности тел покрываются плёнкой молекулярных размеров, образующейся из окружающей среды влажного воздуха, жировых частиц с рук, которыми дотрагиваются до поверхности, и т. д. Эта плёнка, как показали экспериментальные исследования, химически связана с трущимся телом и проникает даже в глубь его, так что если тщательно вытереть поверхность удалив с неё прежнюю смазку, то смазка через некоторое время вы ступает изнутри на поверхность. В последнем наиболее распростра нёниом случае говорят опо л у с у х о м трении. Если же межд двумя твёрдыми поверхностями внести слой смазочного вещества то при обильной смазке и во время непрерывного движения поверх ности вовсе не будут касаться одна другой (фиг. 11), В этом случае трение возникает на обеих поверхностях твёрдых тел, соприкасающихся со смазочной жидкостью, и внутри самой жидкости, В настоящее время считают, впрочем, что жидкость так плотно п р и л и -п а е т к поверхности твёрдого тела, что при движении нет скольжения на этой поверхности, а потому говорят только о жидко м трении. Но при недостаточной смазке или при остановках, когда смазка может быть вытеснена, шероховатые поверхности твёрдых тел касаются одна другой своими выступами (фиг, 12), между которыми остаётся, однако, смазка таким образом, происходит явление смешанного трения, называемого п о л у ж и д к и м трением. В машинах чаще всего имеет место именно такой с.лучай.  [c.25]

С акустической точки зрения электрический двигатель может быть определен как комплекс твердых (жестких) деталей из различных материалов и различной формы и частиц жидкостей, которые трутся, ударяются и вибрируют. В основе акустических явлений находятся вызванные этими движениями, трением, ударами и вибрациями силы различной природы электрической, механической или аэродинамической. Акустическое излучение производится также многими различными способами, зависящими от вида воздействия всех твердых частей или объемов, составляющих машину, и их связи с излучающими силами или соседними элементами, способствующей или ограничивающей звуковое излучение [Л. 225]. Следовательно, излучение шума электрической машиной определяется ее электрическими и конструктивными данными. Допуски производства, как и степень нагрузки машины, также могут влиять на создаваемый шум. Неправильный монтаж или неблагоприятная установка машины вызывает в некоторой области пространства усиление шума за счет излучающих поверхностей, резонансных колебаний или резонирующих помещений. Поэтому сильный шум электрической машины указывает на дефектный. монтаж, установку или нерациональность конструкции, являясь иногда единственным указателем динамического новедення машины.  [c.129]


При уплотнении материала вибрированием масса вибратора приводится в состояние колебательных движений. Вслед за вибратором за счет его кинетической энергии вводятся в состояние колебательных движений и расположенные в зоне его действия частицы уплотняемого материала, поэтому они оказываются под воздействием инерционных сил. Величина этих сил пропорциональна массам частиц. Так как последние не одинаковы, то за счет разности в силах инерции в местах контактов частиц возникают напряжения. До известных пределов эти напряжения будут уравновешиваться силами сцепления и внутреннего трения материала, а в грунтах — и прочностью связующих пленок. После превышения этих пределов возникнут взаимоперемещения частиц. Те силы, с которыми частицы отрываются друг от друга, пропорциональны инерционным силам, поэтому они определяются не только разностью масс соседних частиц, но также и теми ускорениями, которые развиваются при колебательных движениях. Таким образом, относительное перемещение частиц наступит тем скорее, чем больше будет разница в массах отдельных частиц, составляющих материал, и чем слабее будут силы связей между частицами. Поэтому вибрирование применимо к уплотнению материалов, состоящих из частиц разных размеров со слабыми связями между ними. К таким материалам относятся несвязные и малосвязные грунты и бетонные смеси. Последние особенно хорошо уплотняются вибрированием, так как обладают ярко выраженными тиксотропными свойствами, в результате чего при встряхивании они приобретают свойства жидкости.  [c.247]

В любой точке покоящейся жидкости или газа давление по всем направлениям одинаково. Эго справедливо и для идеальных, лишенных трения потоков жидкости или газа. Для вязкой жидкости давление в точке есть среднее давление по трем взаимно перпендикулярным направлениям. Давление в газах связано с передачей импульса при столкнове НИИ находящихся в тепловом движении молекул друг с другом или с поверхностью сосуда, в котором заключен газ. Давление в газе пропорционально его температуре (то есть кинетической энергии его частиц).  [c.96]


Смотреть страницы где упоминается термин Движение частицы (точки) по связи с трением : [c.388]    [c.35]    [c.54]    [c.89]    [c.291]    [c.371]    [c.261]   
Теоретическая механика (1970) -- [ c.225 ]



ПОИСК



Движение со связями

Движение частицы (точки) по связи

Движение частицы по связи с трением

Связи точки

Связь с трением

Точка — Движение

Трение движения

Трение и связи с трением

Частицы и точки



© 2025 Mash-xxl.info Реклама на сайте