Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Пространство абсолютное и энергии

Пусть М — тело, помещенное в пространство, заполненное черным излучением, которое пронизывает тело, как вполне прозрачное. Все его частицы приходят в колебания и в свою очередь испускают излучение, приводящие к затуханию колебаний системы. Таким образом, можно поставить тот же вопрос, что и для резонатора какова связь между энергией колебаний, возбужденных в теле, и энергией окружающего его черного излучения Чтобы предыдущую теорию можно было перенести на этот случай, следует выбрать такие обстоятельства, чтобы погашение собственных колебаний было слабым. С этой целью можно поступить следующим образом. Окружим тело полостью С подогнанной к нему и абсолютно отражающей как с внутренней, так и с внешней стороны. Положим сперва, что эта полость совершенно замкнута, так что нет никакого сообщения между телом и внешним черным излучением. При таких условиях каждая из колеблющихся частиц не испытывает при своем движении никакого сопротивления. В системе происходят свободные колебания — незатухающие — соответствующие его различным степеням свободы, причем для каждого из них существует вполне  [c.85]


В настоящее время абсолютные величины электронной и ядер-ной энергий не могут быть определены, но изменения в величинах этих энергий можно оценить эмпирически по данным теплот образования или сгорания для конкретных рассматриваемых соединений. Значительные сдвиги произошли в области определения величин различных видов термической энергии. Например, на основании классической кинетической теории газов вычислено, что Усредняя энергия поступательного движения в идеальном газе составляет RT. Так как поступательному движению молекулы в свободном от поля пространстве соответствуют три степени свободы (по одной на каждую ось координат), то RT внутренней энергии должна приходиться на каждую степень свободы.  [c.31]

Лучистая энергия возникает за счет энергии других видов в результате сложных молекулярных и внутриатомных процессов. Природа всех лучей одинакова. Они представляют собой распространяющиеся в пространстве электромагнитные волны. Источником теплового излучения является внутренняя энергия нагретого тела. Количество лучистой энергии в основном зависит от физических свойств и температуры излучающего тела. Электромагнитные волны различаются между собой или длиной волны, или числом колебаний в секунду. Если обозначить длину волны через X, а число колебаний через N, то для лучей всех видов скорость w в абсолютном вакууме буд т равна w к-N = 300 000 км сек.  [c.458]

Движение состоит из чего (из относительного и переносного движений, из переноса и поворота...), начинается как (из состояния покоя...), характеризуется чем (кинетической энергией...), (не-) сводится к чему (к вращению...), (не-) раскладывается на что (на поступательное и вращательное...), (не-) задано как (естественным способом, координатным способом...), (не-) задано чем (уравнениями, графиком...), рассматривается как что (как вращение...), можно определить чем (заданием эйлеровых углов...), (не-) определяется, выражается чем (формулами, уравнениями...), (не-) происходит где (в одном направлении, на плоскости, в пространстве, во времени...), является чем (вращением, параллельным переносом,..), (не-) является каким (сложным, поступательным, составным, плоскопараллельным, абсолютным, относительным, переносным...), (не-) меняет что (ориентацию фигуры...).  [c.44]

Теория относительности — это современная физическая теория пространства и времени с ней тесно связаны такие понятия, как движение, масса, энергия и др. В основу теории относительности положен принцип постоянства скорости света, согласно которому скорость света в вакууме постоянна и не зависит от скорости источника света. Теория относительности, к настоящему времени подтвержденная громадным количеством опытных фактов и применяющаяся на практике, устанавливает, что пространство и время связаны между собой в единую пространственно-временн форму существования материи, имеющую абсолютный характер, не зависящую от системы отсчета пространство и время в отдельности являются понятиями относительными, зависящими от системы отсчета, например от скорости ее движения.  [c.76]


Закон Стефана — Больцмана позволяет определить полное количество энергии, излучаемой в пространство поверхностью абсолютно черного тела во всех направлениях. Излучение осуществляется различно-в разных направлениях и поэтому приходится учитывать его интенсивность.  [c.186]

Будем теперь рассматривать не все возможные движения, а только такие, для кото-рых постоянная энергии h имеет одно и то же значение таким образом, она будет играть роль абсолютной постоянной. Все рассматриваемые траектории будут располагаться на многообразии Н = h, yi это многообразие теперь будет объектом нашего рассмотрения вместо всего фазового пространства. Имеем  [c.437]

Таким образом, без введения каких-либо искусственных гипотез получается, что частота волны в -пространстве пропорциональна энергии системы ). Это утверждение, конечно, имеет смысл только лишь, если энергия Е определена не как в классической механике, с точностью до аддитивной постоянной, а абсолютно. От этой аддитивной постоянной не зависит согласно формулам (6) и (11) длина волны  [c.684]

Представим себе замкнутую оболочку, изолированную от окружающего пространства и находящуюся при постоянной температуре, причем внутри оболочки — идеальный вакуум. Несмотря на это, она не будет соверщенно пустой . Ограниченная оболочкой полость будет заполнена электромагнитным излучением, объемная плотность энергии которого и ,, согласно закону Стефана - Больцмана, пропорциональна четвертой степени абсолютной температуры оболочки  [c.186]

Принцип возрастания энтропии не следует понимать как нечто абсолютное, как принцип, справедливый при любых условиях, в том числе для неограниченных масштабов времени и пространства. Иначе неизбежны выводы о тепловой смерти Вселенной. Принцип возрастания энтропии справедлив в условиях земных, околоземных и, возможно, в условиях Солнечной системы. В этих условиях все протекающие явления подчиняются двум принципам закону сохранения и превращения энергии и закону возрастания энтропии. Для обсуждения проблемы энтропии Вселенной наукой еще не накоплено достаточное количество фактов.  [c.51]

Рассмотрим общий случай движения газового потока. Возникает первый, наиболее важный вопрос как влияет фактор движения на термодинамические свойства газа Теоретические рассмотрения и многочисленные опыты утверждают, что любое перемещение в пространстве не влияет на термодинамические свойства потока. Это значит, что для наблюдателя, движущегося вместа с рассматриваемым элементом потока (на рис. 28 заштрихован), основное уравнение du = d°Q — pdv для этого элемента остается справедливым. Тогда для движущейся частицы в абсолютном движении закон сохранения и превращения энергии запишется в виде двух уравнений  [c.116]

Это объясняется тем, что изменение уровня Ру ) одинаково сказывается на величинах ро и р, (ро—давление до ограниченного пространства, pi—давление после него). Очевидно, и на потере энергии струи в ограниченном пространстве АЕ абсолютное значение уровня оказывается только в той мере, в какой это оказывает влияние на физические свойства газов. В герметичном  [c.88]

Излучаемая телами энергия, как уже указывалось, распространяется в пространстве во все стороны и, падая на другие твердые или жидкие тела, частично ими поглощается, превращаясь в тепло, частично отражается ими и частично проходит сквозь них. Способность тел поглощать падающую на них лучистую энергию тем больше, чем больше у них способность излучать энергию таким образом, наибольшей поглощающей способностью обладают абсолютно черные тела, поглощающие всю падающую на них лучистую энергию, ничего не отражая.  [c.34]

Не рассматривая детально различные приближения в теории молекул, отметим, что физической причиной понижения энергии при образовании молекулы являются притяжение электронов одновременно к обоим ядрам и неразличимость электронов. Каждый электрон концентрируется в области между ядрами в ней же резко растет плотность заряда. Таким образом, возникновение химической ковалентной связи сопровождается сгущением зарядового облака в пространстве между ядрами. При этом потенциальная энергия электрона вследствие его притяжения к обоим ядрам становится больше по абсолютной величине (оставаясь отрицательной), чем в случае притяжения электрона только к одному ядру, и общая энергия системы понижается. Увеличение плотности заряда в области между ядрами, по-видимому, возможно, если зарядовые облака электронов перекрываются. Степень перекрытия может служить приближенной мерой прочности связи.  [c.16]


При враш ении КА в рассмотренном геомагнитном поле в предположении, что его корпус сплошной и состоит из электропроводящего материала, в корпусе возникают вихревые токи (рис 1.10, 1.11), которые приводят к диссипации энергии и, следовательно, к уменьшению угловой скорости вращения. Это значит, что появляется момент, направленный против составляющей скорости вращения (о,, ортогональной силовым линиям магнитного поля. Однако, если вектор угловой скорости (о собственного вращения сохраняет в абсолютном пространстве свое направление то вектор JSe при движении КА в земном магнитном поле меняет свое направление. Следовательно, замедление коснется не одной только составляющей со,, а всей угловой скорости о) в целом  [c.16]

Активная стабилизация и управление КЛА с помощью маховиков требует непрерывной затраты энергии на их вращение и на вращение КЛА Для оценки расхода энергии, потребляемой системой маховик—КЛА , по-прежнему ограничимся рассмотрением управления КЛА только вокруг одной оси ОХ Полагаем, что задача состоит в том, чтобы неподвижному в начальный момент времени (/ = 0) 13 абсолютном пространстве КЛА сообщить вокруг оси ОХ угловую ско-  [c.112]

При абсолютном нуле последний заполненный уровень по определению есть уровень Ферми Ef (0). Если предположить, что энергетические поверхности сферически симметричны, то можно вычислить энергию Ферми для кристалла с линейными размерами L, содержащего N электронов в 1 см . Любая тройка целых чисел пх, Пу, п ) соответствует точке в п-пространстве (разрешенному уровню), при этом расстояние между двумя соседними точками в направлениях х, у ж z равно единице следовательно, объем, занимаемый в п-пространстве одним уровнем (двумя состояниями), равен 1 . Число состояний, для которых п меньше заданной величины И/, равно 2- /зЛ/г . С другой стороны, кристалл содержит NL электронов, поэтому при 0° К  [c.70]

Форма зоны Бриллюэна связана со структурой элементарной ячейки в реальном пространстве. Валентные электроны металла последовательно занимают энергетические состояния в пределах этой зоны. Объем пространства, соответствующего занятым состояниям, определяется электронной концентрацией, или числом, электронов на элементарную ячейку. Поверхность этого занятого электронами объема называется поверхностью Ферми. При температуре выше абсолютного нуля (и при обычных температурах) занятые состояния вблизи поверхности Ферми распределяются в узком интервале значений энергии, средняя величина которых носит название энергии Ферми. В связи с этим поверхность Ферми практически является изоэнергетической поверхностью.  [c.224]

Работа турбин основана на совершенно ином принципе — они преобразуют в полезную мощность кинетическую энергию движущейся воды. При помощи специального направляющего приспособления вода, движущаяся с большой скоростью, вводится без удара в пространство между лопатками рабочего колеса эти лопатки отклоняют поток воды от своего первоначального направления так, что он покидает рабочее колесо с возможно меньшей абсолютной скоростью. При такого рода движении воды вредные потери энергии получаются небольшими, следовательно, почти вся разность между кинетической энергией воды, поступающей в рабочее колесо, и кинетической энергией воды, выходящей из рабочего колеса, преобразуется в мощность на рабочем вале турбины.  [c.325]

Преобразование мощности падающей воды в мощность на вале турбины возможно двумя способами. При первом способе вся мощность напора воды еще до входа в рабочее колесо преобразуется целиком в кинетическую энергию струи, направляемой при помощи специального приспособления в рабочее колесо. Такие турбины Рис. 186. План скоростей называются турбинами равного давления, турбины равного давления Обозначим абсолютную скорость воды, поступающей в рабочее колесо, через Сг, а окружную скорость вращения рабочего колеса — через щ-, тогда скорость воды относительно колеса ад будет равна геометрической разности скоростей сх и щ (рис. 186). Входные кромки лопаток имеют направление, приближенно совпадающее с направлением скорости гюг- Войдя в пространство между двумя лопатками, поток воды отклоняется от своего первоначального направления и выходит с другой стороны лопатки в направлении адг- Относительная скорость ц 2 по своей величине может быть принята равной скорости у)1, так как  [c.325]

Теория относительности есть современная физическая теория пространства и времени с ней тесно связаны такие понятия, как движение, масса, энергия и др. В основу теории относительности положен принцип постоянства скорости света, согласно которому скорость света постоянна и не зависит от скорости источника света. Теория относительности, к настоящему времени подтвержденная громадным количеством опытных фактов и применяющаяся на практике, устанавливает, что пространство и время связаны между собой в единую пространственно-временную форму существования материи, имеющую абсолютный характер, не зависящую от си-  [c.83]

При фантастической плотности в 10 г/см между зернами вакуума действует соответственно огромной силы гравитационное поле, вызывающее такие местные искривления в пространстве-времени, что энергия вакуума оказывается как бы запечатанной в ячейках мелкозернистой структуры и поэтому никак не проявляется. Чтобы возбудить вакуум, надо сжать материю до огромной плотности, что в земных условиях требует создания ускорителей во много миллиардов раз мощнее Серпуховского. Поэтому здесь вакуум остается абсолютно инертной пустотой . В космосе же необходимые плотности достигаются естественно в объектах, сжимающихся собственными гравитационными силами — в коллан-сирующих звездах и Вселенной.  [c.38]


Так, например, недавно выяснилось, что сблнечную активность, взрывные явления в ядрах галактик и в квазарах не удается объяснить в рамках теории термоядерного синтеза. Поскольку новые источники энергии открываются по мере проникновения все более глубоко в структуру вещества, возникла мысль о существовании вакуумной энергии . Космический вакуум представляется теперь сверхплотной средой с мелкозернистой структурой, а обычная материя есть разреженное состояние этой среды. При фантастической плотности в /см (вычисленной по этой теории) между зернами вакуума действуют огромные гравитационные силы, вызывающие такие местные искривления в пространстве-времени, что энергия вакуума оказывается как бы запечатанной в ячейках мелкозернистой структуры и поэтому никак не проявляется. Чтобы возбудить вакуум, надо с)((ать материю до огромной плотности, что в земных Условиях требует создания ускорителей во много миллиардов раз мощнее Серпуховского. Поэтому здесь вакуум остается абсолютной инертной пустотой . В космосе же необходимые плотности достигаются естественно в объектах,  [c.180]

Пусть gi, q2, дз — обобщенные координаты, описывающие положение точки О в абсолютном пространстве So, и пусть q[, g, g — обобщенные координаты, описывающие положение тела относительно точки О, т. е. определяющие направления главных осей, неподвижных в теле но отношению к системе координат, неподвижной в пространстве. По теореме Кёнига ( 25) можно записать кинетическую энергию тела так  [c.134]

Происходит следующим образом из котельного агрегата пар подводится в поло(сть 1, по омружно сти которой имеется ряд сопл 2. В этих соплах происходит (некотор ое понижение давления, и по выходе из них пар приобретает большую скорость, энергия которой передается лопатками 3 диска, расположенного в первой камере. За лопатками 3 пар им1еет небольшую абсолютную окорость. После прохода пара через сопло 4 давление его снижается, но скорость опять возрастает и энергия передается лопаткам 5 диска, расположенного во второй иамере. То же происходит и в следующей третьей (Ступени, в которой пар расширяется до давления, имеющегося в пространстве 6, соединенном с конденсатором.  [c.123]

Рассмотрим сначала простейшее представление электрический ток — это движение электронов под воздействием приложенного электрического поля. В металлах число электронов, участвующих в электропроводности, зависит от структуры кристалла, а для одновалентных металлов —это один электрон на атом Поведение электрона, находящегося в твердом теле, удобнее всего описывать в трехмерной системе координат, для которой три декартовы координаты кх, ку и кг являются компонентами волнового числа к. Электрону с энергией Е и импульсом р соответствует волновое число к. Согласно уравнению де Бройля, р=Ьк (где Й—постоянная Планка, деленная на 2л) и Е р 12т. Положение электрона в -пространстве характеризуется вектором к, пропорциональным импульсу электрона. В ыеталле, содержащем N свободных электронов, при абсолютном нуле температуры электроны займут N 2 низших энергети-  [c.187]

Основные закономерности электромеханического преобразования энергии в ЭМ, несмотря на различие их принципов действия и типов, базируются на одних и тех же физических процессах, что дает основание для обобщенного описания, получившего наглядное отражение в современной математической теории ЭМ [17, 18]. Здесь вращающееся ЭМУ рассматривается как совокупность соответствующих электрических контуров, взаимодействие которых во времени / и пространстве (например, по углу на основе известных законов электродинамики и механики приводит к возникновению в контурах ЭДС. В любом к-м контуре при наличии взаимной индуктивности M f j с каким-то /- контуром от тока последнего /у создается потоко-сцепление Ф = Л/ у (1 )/у (Г) и индуктируется как ЭДС трансформатора е р, обусловленная изменением абсолютного значения индукции магнитного поля, так и ЭДС вращения Сцр, связанная с относительным перемещением контуров с угловой частотой О, = <1г е =  [c.101]

ГИЮ, не сущестьовало. Фрслих вычислил энергию взаимодействия с помощью теории возмущений второго порядка. Он показал, что если взаимодействие достаточно велико, то, когда тонкий слой электронов, близких к поверхности Ферми нормального металла, смещается вверх на небольшое расстояние в к-пространстве, энергия при абсолютном нуле уменьшается. Он предположил, что такое оболочечное распределение представляет сверхпроводящее состояние. Детали теории вызывают серьезные сомнения, ибо из критерия сверхпроводимости, а именно из условия, что оболочечное распределение имеет меньшую энергию, чем нормальное, вытекает, что взаимодействие должно быть велико и, следовательно, теория возмущений становится неприменимой. По-видимому, основы теории правильны, однако, чтобы дать надежную картину природы сверхпроводящего состояния, требуются более совершенные математические методы ). Более подробно теория Фре-лиха рассмотрена в п. 42.  [c.755]

Согласно Куперу, при сколь угодно слабом притяжении между частицами ферми-газа вблизи ноБерхности Ферми возникают связанные пары частиц. Этот весьма нетривиальный результат является ключом к пониманию явления сверхпроводимости. Действительно, без учета эффекта Купера в основном состоянии металла электроны заполняют (в изотропном случае) фермиевскую сферу в импульсном пространстве. Если предположить, что в металле имеет место некоторое эффективное притяжение между электронами, то должно произойти спаривание электронов. При этом основное состояние будет лежать ниже, чем у свободных электронов, на величину энергии связи пар. Электронные пары обладают целым спином и поэтому подчиняются статистике Бозе. А бозе-газ при абсолютном нуле, как известно, обладает свойством сверхтекучести. В применении к бозе-газу заряженных частиц это свойство проявится в форме сверхпроводимости. Приведенные соображения не претендуют на строгость, однако они, безусловно, указывают на то, что полное объяснение явления сверхпроводимости можно получить на базе эффекта Купера.  [c.885]

Известно, что металл с кристаллической структурой представляет собой систему положительных ионов (ядра, окруженные электронами внутренних орбиталей), 1югруженную в отрицательный электронный газ обобществленных внешних электронов. Электроны, обладающие достаточным запасом кинетической энергии, вырываются из металла и образуют над его поверхностью отрицательно заряженное облако. Электроны, находящиеся внутри металла и вблизи его поверхности, отталкиваются от этого облака, смещаясь внутрь металла. В результате уменьшается поверхностная плотность электронов и индуцируется положительный заряд, равный по абсолютной величине отрицательному заряду электронного облака. Сила взаимодействия между зарядами - сила электрического изображения - имеет значительную дальность действия, до 10 мкм от поверхности. Следовательно, энергетический потенциал поверхности характеризуется потенциалом внепп1сго пространства на расстоянии примерно 10 мкм от поверхности. Облако электронов совместно с наружным слоем положительных ионов образует двойной электрической слой. Таким образом, наличие электрического потенциала поверхности твердого тела и полярных молекул поверхностно-активных веществ предопределяет уровень их энергетического взаимодействия при адсорбции и строение адсорби -)ованной пленки.  [c.54]

Если Р равно нулю, то X будет постоянной, что дает теорему площадей. Второе приложение. Твердое тело, движущееся вокруг неподвижной точки. Рассмотрим твердое тело, движущееся вокруг неподвижной точки О, и вычислим энергию ускорений S, относя движение к системе осей Охуг, движущихся одновременно как относительно тела, так и в пространстве. Обозначим через Q мгновенную угловую скорость вращения триедра Охуг и через Р, Q, R— его составляющие по осям, через w— мгновенную угловую скорость вращения тела и через р, q, г — ее составляющие. Частица т тела с координатами х, у, г обладает абсолютной скоростью д с проекциями  [c.336]


Теплота, излучаемая Землей в мировое пространство, характеризуется спектром, который приблизительно соответствует спектру излучения абсолютно черного тела с температурой 300 К, — за исключением отсутствующих поглощенных длин волн. Энергия, излучаемая земной поверхностью, поступает в атмосферу при этом значительная часть ее поглощается. Поглощенная энергия должна быть в конце концов излучена обратно, однако атмосфера излучает длинные волны по Есем направлениям. Другими словами, почти половина инфракрасного излучения земной поверхности возвращается назад. Подобное свойство атмосферы, пропускающей к земной поверхности короткие волны, но поглощающей и отражающей обратно длинные, называется парниковым эффектом ибо на этбм принципе основано устройство оранжерей и теплиц. Облака, состоящие главным образом из ка-  [c.289]

Испускаемая частицами всщсства электромагнитная энергия распространяется в пространстве посредством поперечных электромагнитных волн с огромной скоростью. Для распространения электромагнитных волн, как известно, не требуется наличия материальной среды. В абсолютном вакууме они перемещаются с максимальной скоростью, равной 299792,5 км/с. Таким образом,. характерными особенностями радиационного теплообмена являюгся также очень большая скорость носителей и возможность передачи теплоты от одного тела к другому при отсутствии какой-либо промежуточной среды между ними.  [c.8]

УГОЛ естественною откоса — угол трения для случая сьшучей среды зрения — угол, под которым в центре глаза сходятся лучи от крайних точек предмета или его изображения краевой — угол между поверхностью тела и касательной плоскостью к искривленной поверхности жидкости в точке ее контакта с телом Маха — угол между образующей конуса Маха и его осью падения (отражения или преломления)— угол между направлением распространения падающей (отраженной или преломленной) волны и перпендикуляром к поверхности раздела двух сред, на (от) которую (ой) падает (отражается) или преломляется волна предельный полного внутреннего отражения — угол падения, при котором угол преломления становится равным 90 прецессии — угол Эйлера между осью А неподвижной системы координат и осью нутации, являющейся линией пересечения плоскостей xOj и x Of (неподвижной и подвижной) систем координат сдвига—мера деформации скольжения — угол между нада ющнм рентгеновским лучом и сетчатой плоскостью кристалла телесный — часть пространства, ограниченная замкнутой кони ческой поверхностью, а мерой его служит отношение нлоща ди, вырезаемой конической поверхностью на сфере произволь ного радиуса с центром в вершине конической поверхности к квадрату радиуса этой сферы трения—угол, ташенс которого равен коэффициенту трения скольжения) УДАР [—совокупность явлений, возникающих при столкновении движущихся твердых тел с резким изменением их скоростей движения, а также при некоторых видах взаимодействия твердого тела с жидкостью или газом абсолютно центральный <неупругий прямой возникает, если после удара тела движутся как одно целое, т. е. с одной и той же скоростью упругий косой и прямой возникают, если после удара тела движутся с неизменной суммарной кинетической энергией) ]  [c.288]

В обобщенном виде система балансовых уравнений может быть представлена в виде вектор-функции Ф (Z, Z ) = О, устанавливающей соотношение между термодинамическими и расходными параметрами связей, обеспечивающее получение заданной стационарной нагрузки установки с определенными конструктивнокомпоновочными характеристиками. В геометрической интерпретации [87 1 вектор-функция Ф (Z, =- О задает нелинейную поверхность стационарных состояний установки в многомерном пространстве, координатами которого являются значения нагрузки установки как по электрической энергии, так и по холоду, а также величины подмножеств Z и Для расчета приведенных затрат, учета ограничений, отражающих требования технологичности изготовления, длительной надежной эксплуатации установки и т. д., и в дополнение к системе балансовых уравнений в математическую модель вводятся соотношения для вычисления различных технологических и материальных характеристик отдельных агрегатов. Эти соотношения получаются в результате совместного решения задач теплового, гидравлического, аэродинамического и прочностного расчета агрегатов и представляют собой в большинстве случаев неявные функции параметров совокупностей Z и Z . Опыт математического моделирования показал, что для теплоэнергетических агрегатов число этих характеристик невелико. Это характеристики изменения давления, энтальпии и средней скорости каждого теплоносителя, наибольшей температуры стенки, ее абсолютной или относительной толщины, а также расходов материалов. В обобщенном виде система характеристик описывается вектор-функцией (Z, Z ) = 0.  [c.40]

Количество резонаторных пучков ограничено временем существования инверсии (20-40 не) и обычно равно двум или трем. Пучки частично перекрываются в пространстве и во времени, конкурируя между собой по мощности в процессе формирования. Каждый пучок излучения характеризуется своими пространственными, временными и энергетическими характеристиками — средней и пиковой мощностью, расходимостью, распределением интенсивности в ближней и дальней зонах, абсолютным значением и процентным содержанием мощности на отдельных длинах волн (Л = 0,51 и 0,58 мкм), импульсной энергией, длительностью, временем возникновения и исчезновения импульса, степенью стабильности импульсной энергии и оси диаграммы направленности. Характеристики пучков в однозеркальном режиме определяются параметрами зеркала, в режиме генератора — типом резонатора и параметрами его зеркал и существенно зависят от условий возбуждения (характеристик импульсов накачки, уровня вводимой мощности, давления буферного газа, ЧПИ).  [c.281]

Но применить этот закон к дуге в большинстве случаев невозможно, потому что закон Стефана — Больцмана относится к телам, имеющим непрерывный спектр излучения. Дуга же, как известно имеет линейчатый спектр излучения, причем характер этого спектр изменяется с температурой. На рис. 5-7 показано распределень энергии излучения в спектре абсолютно черного тела при разныл температурах, а на рис. 5-8 дано сравнение распределения энергии в спектрах абсолютно черного тела и газа. Рис. 5-8 является схематическим. Он показывает, что в спектре газа имеется ряд линий и полос, в пределах которых совершается излучение, а между ними — пространства, не дающие излучения. Для того чтобы найти суммарное излучение, необходимо было бы проинтегрировать сложную кривую рис. 5-8, которая, как указано выше, меняется с температурой. В ней появляются некоторые новые линии, другие могут исчезнуть, а при очень высоких температурах появляется усиливающийся  [c.132]

Примечание. Теорему о кинетической энергии для несвободной точки в форме (55) нельзя применять в том случае, когда гладкая поверхность, по которой движется материальная точка, сама перемещается в пространстве. В этом случае нельзя уже утверждать, что работа нормальной реакции поверхности равна нулю и что изменение кинетической энергии материальной точки равно работе только заданной силы Р. В самом деле, когда точка перемещается по движугцейся поверхности, то ее скорость складывается геометрически из двух скоростей относительной и переносной. Нормальная реакция поверхности N остается все время перпендикулярной к относительной скорости точки, но с переносной скоростью она может образовать любой угол как острый, так и тупой. Поэтому работа силы N в абсолютном движении точки не будет уже равна  [c.429]

Электроскопы. В радиохимии измерение тока, проходящего через интегрирующую камеру, обычно заменяется визуальным наблюдением разряда электроскопа. Электроскопы не требуют никакого вспомогательного электрооборудования. В настоящее время знакомый всем электроскоп с золотыми листками вытеснен более чувствительным электроскопом Лауритсена [84] (см. также [95]). В этом приборе роль силы, возвращающей его в исходное положение, играет не тяжесть, а упругость безинер-ционной, короткой и тонкой кварцевой нити, покрытой золотом. Нить рассматривается в микроскоп. Электроскоп Лауритсена очень чувствителен естественная утечка в нем мала. Как и в случае ионизационной камеры, наполненной воздухом, исследуемый образец легко вводится в чувствительное пространство (так что гарантируется достаточно большой эффективный телесный угол) благодаря отсутствию каких-либо дополнительных стенок прибор можно использовать и в случае сильно поглощающихся излучений. В определенных пределах мягкость исследуемых лучей составляет даже преимущество, ибо удельная ионизация возрастает с уменьшением энергии. Некоторые авторы [60, 61, 86] (см., однако, [91, 92]) считают электроскопический метод одним из лучших для стандартного исследования (верхний предел энергии Р-лучей составляет 156 кеУ образец может быть взят в виде двуокиси углерода), 5 (169 keV вводится в виде твердого бензидин-сульфата [80]) и № (18 кеУ вводится в виде водорода). Этот метод, однако, плохо подходит для абсолютных измерений.  [c.117]



Смотреть страницы где упоминается термин Пространство абсолютное и энергии : [c.298]    [c.349]    [c.13]    [c.17]    [c.196]    [c.323]    [c.27]    [c.223]    [c.135]    [c.240]    [c.506]    [c.123]   
Классическая динамика (1963) -- [ c.200 , c.202 , c.203 , c.324 , c.333 , c.333 , c.381 , c.381 , c.401 , c.401 ]



ПОИСК



Пространство абсолютное



© 2025 Mash-xxl.info Реклама на сайте