Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Шасси характеристики

Рис. 6.10.3. Работа механизма уборки шасси а — зависимость характеристики подъемника от кинематики уборки шасси характеристика 1 рациональнее характеристики 2 б — рациональная кинематическая схема уборки шасси 1,2 — шарниры подъемника и стойки шасси а, а — плечо механизма уборки Рис. 6.10.3. Работа механизма уборки шасси а — зависимость <a href="/info/440273">характеристики подъемника</a> от кинематики уборки шасси характеристика 1 рациональнее характеристики 2 б — рациональная кинематическая <a href="/info/562195">схема уборки шасси</a> 1,2 — шарниры подъемника и стойки шасси а, а — плечо механизма уборки

В соотношении (1.6) обычно при оценке усталостной долговечности в качестве характеристики повреждаемости Df рассматривают число циклов нагружения. В реальной эксплуатации при взаимодействии нагрузок, особенно в случае малоцикловой усталости, линейное суммирование накопленных повреждений не отражает реального, нелинейного процесса накопления повреждений в различных зонах центроплана и крыла ВС [29, 38]. Это же относится и к стойкам шасси пассажирского самолета [39]. Интервал разброса в оценках накопленных повреждений может составлять 0,5-4,0 [40, 41], а при учете последовательности циклов нагружения разброс данных может быть еще выше [19, 24, 30]. Поэтому для более точной оценки усталостной долговечности введен метод спектрального суммирования, позволяющий установить связь между характеристиками долговечности и характеристиками случайного процесса нагружения на основе использования спектральной плотности мощности [30]. При нерегулярном нагружении, характеризуемом непрерывной спектральной плотностью, энергия процесса с частотой со/,- может быть заменена эквивалентной (по средней использованной долговечности) энергией, характеризующей процесс нагружения на другой частоте. В частности, на некоторой характеристической частоте  [c.37]

Рис. 5.7. Межзеренный рельеф излома (а) стойки шасси самолета Ан-74, изготовленной из титанового сплава ВТ-22 (6), (в) спектры фрактальных характеристик этого рельефа в двух направлениях Рис. 5.7. Межзеренный рельеф излома (а) <a href="/info/493587">стойки шасси самолета</a> Ан-74, изготовленной из <a href="/info/29902">титанового сплава</a> ВТ-22 (6), (в) спектры фрактальных характеристик этого рельефа в двух направлениях
Как правило, самолеты-разведчики и легкие бомбардировщики того времени имели морские варианты — с заменой колесного шасси специальными поплавками (самолеты МР-1, МР-5, учебный самолет МУ-1). Но такой способ превращения сухопутных самолетов в морские значительно ухудшал их основные летно-тактические характеристики и не обеспечивал достаточной мореходности (способности к нормальной эксплуатации на взволнованной водной поверхности). Поэтому наряду с разработкой поплавковых вариантов сухопутных самолетов велось конструирование специальных типов гидросамолетов ( летающих лодок ) с более высокими мореходными качествами. Так, еще в 1922 г. под руководством Д. П. Григоровича была спроектирована и построена двухместная летающая лодка М-20. В 1927 г. тем же конструкторским коллективом была подготовлена к летным испытаниям цельнометаллическая двухмоторная летающая лодка РОМ-1 (разведчик открытого моря), а в 1930—1933 гг. конструкторы ЦАГИ, использовавшие опыт проектирования металлических глиссеров и торпедных катеров, разработали конструкции летающих лодок-монопланов — морских разведчиков дальнего действия АНТ-8 (МДР-2) и морских разведчиков ближнего действия АНТ-27 (МБР-4) последние вошли затем в серийное производство.  [c.336]


На корабле имеется целый ряд узлов конструкций, где использование перспективных композиций могло бы обеспечить существенную экономию массы или улучшение характеристик. Работы были сконцентрированы на шести основных вариантах композиций бор — эпоксидная смола, графит — эпоксидная смола, бор — полиимид, графит — полиимид, бор — алюминий и PH В-49 — эпоксидная смола. Исследовали следующие элементы конструкций (включая разработку демонстрационных образцов) 1) панели фюзеляжей 2) рамы фюзеляжей 3) каркас отсеков крыльев 4) ребра, работающие на срез 5) люки шасси 6) сосуды, работающие под давлением (бандажированные) 7) несущие элементы силового оборудования, трубчатые фермы, панели и брусья 8) несущую конструкцию системы тепловой защиты 9) панели, разделяющие ступени 10) панели радиаторов.  [c.118]

Для электрических коррозионных исследований часто бывает нужно иметь несколько измерительных самопишущих приборов, ведущих синхронную запись эти приборы иногда оказываются довольно тяжелыми. Чтобы можно было быстро и надежно доставить их к отдаленным точкам измерения на местности, целесообразно размещать такие приборы в передвижной лаборатории на автомобильном шасси. Для работ по обслуживанию и контрольных измерений обычно бывает достаточно иметь комбинированный легковой автомобиль. Напротив, для длительной записи блуждающих токов рекомендуется применять автомобиль с крытым кузовом, в котором можно было бы работать стоя. В разделе З.З (табл. 3.2) приведены характеристики важнейших измерительных приборов. Время для сборки электрических измерительных схем может быть сокращено благодаря применению щита с распределительными шинами (швейцарского щита), подключенного к измерительным клеммам на наружной стенке передвижной лаборатории и к рабочим клеммам измерительных приборов. Для электрического питания и обеспечения работы самопишущих приборов целесообразно иметь аккумуляторную батарею на 12 В и умформер (генератор) на 220 В. Все результаты, данные о длительности измерений, времени их проведения и прочие факторы могут быть прямо на месте занесены в протокол измерений. При колебаниях измеряемых величин во времени  [c.81]

Транспортный робот представляет собой самоходную машину с автоматическим управлением, В качестве двигательной системы робота обычно выступает колесное или гусеничное шасси вместе со встроенными тяговыми и рулевыми приводами. Информационная система робота служит в основном для определения навигационных характеристик, т. е. местоположения и ориентации робота в рабочей зоне, а также для обеспечения взаимодействия робота с оборудованием ГАП. Система управления, используя сигналы обратной связи о фактическом положении и ориентации робота, вырабатывает такие управляющие воздействия на тяговые и рулевые приводы, при обработке которых робот движется по заданной трассе с требуемой скоростью.  [c.184]

Рис. 149. Тяговая характеристика экспериментального самоходного шасси ВИМ класса 0,6 т на асфальтированной дороге Рис. 149. <a href="/info/158946">Тяговая характеристика</a> экспериментального <a href="/info/159785">самоходного шасси</a> ВИМ класса 0,6 т на асфальтированной дороге
На рис. 2 показана тяговая характеристика шасси ВИМ, снятая на асфальтированной дороге. Максимальный условный тяговый к. п. д. шасси 0,69 был зафиксирован на первом диапазоне работы тяговых гидромоторов при тяговом усилии —600 кг и буксовании 7%.  [c.291]

Использование характеристик случайных процессов для обработки экспериментальных данных о нагруженности деталей. Обобщенный нагрузочный режим элементов шасси представляет собой совокупность отдельных элементарных случайных стационарных и нестационарных процессов, характеризующих как установившееся, так и неустановившееся движение автомобиля. Для большинства деталей трансмиссии и ходовой части при установившемся движении, которое составляет основную часть пробега автомобиля, нагрузочные режимы являются нормальными стационарными случайными процессами. Нестационарные случайные процессы можно привести к стационарным путем применения к ним операций исключения трендов среднего значения, дисперсии и частоты. Эти операции основаны, главны м образом, на использовании метода наименьших квадратов, фильтрации, сглаживании, дифференцировании.  [c.187]


Возмущающее действие дорожного микропрофиля. При движении автомобиля на детали его шасси действуют возмущения со стороны двигателя и дороги. При установившемся движении основным входным воздействием, формирующим нагрузочные режимы большинства элементов ходовой части и трансмиссии, являются низкочастотные колебательные процессы, возбужденные дорожными неровностями. Ровность дороги определяется ее микропрофилем [72, 97, 121 и др.], одной из основных характеристик которого является спектральная плотность. Чаще всего используется аналитическое представление спектральной плотности микропрофиля в виде полинома  [c.188]

В этой главе мы рассматриваем основные элементы конструкции автомобиля и их назначение, пути, по которым идет развитие конструкций, а также внешние нагрузки, которые следует использовать в расчете. Мы проанализировали компоновку автомобиля и выяснили, как на нее влияют аэродинамические характеристики, размещение агрегатов, пассажиров и водителя. В других главах книги мы исследуем поведение тонкостенных балок при изгибе и кручении, методику, с помощью которой реальные конструкции легковых машин и автобусов можно заменить расчетными схемами, а также рассмотрим порядок определения распределения нагрузок между элементами конструкции. Кроме того, мы рассмотрим порядок расчета сопротивления конструкции удару и усталостному разрушению, а также влияние на конструкцию технологии изготовления. Наконец, рассматриваются специальные задачи, связанные с конструкцией грузовых автомобилей и автофургонов, оснащенных шасси и не оснащенных ими, используя более совершенные методы строительной механики.  [c.18]

Пружинный демпфер дает упругость в ВШ, а ее наличие снижает значения потребного демпфирования. Упругим элементом в пружинно-гидравлическом демпфере может быть стальная пружина, резиновая втулка, радиальная металло-резиновая втулка. Запас демпфирования по земному резонансу обеспечивается соответствующим выбором характеристик шасси,  [c.102]

Характеристики колес, тормозов и шин шасси должны соответствовать взлетно-посадочным характеристикам вертолета и при этом обеспечивать  [c.252]

Консольная (балочная) кинематическая схема (рис. 6.4.2, б) характерна большими моментами на штоках амортизаторов, что приводит к значительным по величине реакциям в буксах амортизаторов. Это ухудшает динамические характеристики амортизации шасси как н процессе посадки, так и при поглощении энергии при земном резонансе.  [c.261]

Пирамидально-параллелограммная кинематическая схема (рис. 6.4.2, г) лучше всего отвечает специфическим условиям эксплуатации вертолета на корабле. Применение такой кинематической схемы основного шасси позволяет получить большой ход колеса в вертикальной плоскости с практически неизменной колеей. Другим достоинством схемы является то, что амортизатор шасси воспринимает только осевые нагрузки, что позволяет сделать его характеристику чувствительной к малым нагрузкам.  [c.261]

В зависимости от условий эксплуатации, нагрузки, действующей на амортизационную стойку, заданных характеристик жесткости, величины конструктивно возможного хода штока и кинематической схемы шасси выбирается КСС амортизационной стойки.  [c.265]

Колея шасси В влияет на противокапотажный угол у и на характеристики земного резонанса. Применение специальных амортизаторов шасси и демпферов ВШ позволяет успешно бороться с явлением земного резонанса практически при всех возможных значениях колеи шасси вертолетов.  [c.265]

ХАРАКТЕРИСТИКИ ПНЕВМАТИКОВ КОЛЕС ШАССИ  [c.267]

Энергетические и перегрузочные характеристики прочности и энергоемкости пневматиков колес шасси  [c.270]

КОРРЕКТИРОВКА ПАРАМЕТРОВ И ХАРАКТЕРИСТИК ШАССИ  [c.284]

Коэффициент демпфирования h для обеспечения устойчивого движения без учета упругости стойки шасси является функцией ряда параметров и характеристик (рис. 6.9.4)  [c.289]

Характеристики гидравлических механизмов уборки и выпуска шасси  [c.294]

Удачный выбор характеристик амортизации передней стойки шасси велосипедного типа может значительно упростить технику выполнения посадки.  [c.138]

IV. 5.3. Технические характеристики автомобильных,- пневмоколесных и на специальном шасси автомобильного типа 00 стреловых кранов  [c.148]

Последовательно совершенствуя новые типы пассажирских самолетов серийной постройки, конструкторы улучшали их аэродинамические свойства и прочностные характеристики в частности, срок службы планеров (фюзеля-л ей, крыльев и шасси) был увеличен до 30 тыс. летных часов, соответствующих примерно 15 годам регулярной эксплуатации.  [c.394]

При измерениях люфтов, проведенных М. Н. Шепером, в соединениях шасси 16 самолетов были определены количественные характеристики износов, которые получаются при использовании обычной товарной и металлоплакирующей смазок. В случае применения смазки ЦИАТИМ-201 наблюдалась положительная корреляция между скоростью износа и люфтом в соединении, а износ по наработке h изменялся по экспоненте вида [49]  [c.96]

Краны стрелошые передвижные на гусеничном ходу — Кинематические схемы 9 — 912 --на железнодорожном ходу 9 — 917 Кинематические схемы 9 — 918 Характеристика 9 — 919 - на шасси автомобиля 9 — 900 Кинематические схемы 9 — 920 Краны стрипперные — Эксплоатационные характеристики 9 — 849 Краны строительные 9 — 887 Башни 9 — 840  [c.122]

Несмотря на наличие специальных томов. Справочника", посвящённых мате, риаловедению (тт. 3 и 4), в главе II включены сведения о выооре и характеристике материалов для тех или иных ответственных деталей шасси. В части расчёта ааны лишь специфические сведения применительно к расчёту отдельных агрега-  [c.462]


Амортизаторы [F 16 F гидравлические и пневматические, конструктивные элементы F 16 F 9/32-9/54 использование в формовочных машинах В 22 С 15/16-15/18 испытание G 01 М 17/04 в подвесках транспортных средств <В 60 G 11/00-11/64 15/00-15/14 ж.-д. В 61 F 5/06-5/12, 5/20) для поршневых машин или двигателей F 01 В 11 /02 регулирование их характеристик в подвесках транспортпых средств В 60 С 17/02-17/04 рулевых устройств велосипедов, мотоциклов и т. п. В 62 К 21/08 для стрел подъемных кранов В 66 С 23/92 в тяговых и буферных устройствах ж.-д. транспортных средств В 61 G 9/00-11/18 шасси летательных аппаратов, размещение и модификация В 64 С 25/58-25/64]  [c.45]

Алгоритм функционирования модуля навигации и адаптивного управления иллюстрируется блок-схемой, представленной на рис. 6.11. Для проверки адаптационных возможностей этого модуля в экспериментах по моделированию на ЭВМ управляемых движений робота Адап-трон-1 в широких пределах варьировались как важнейшие динамические характеристики шасси и приводов, так и свойства среды. Изменению подвергались нагрузка на шасси, питающее напряжение приводов, характер грунта, расположение препятст-  [c.202]

Сжимаемость жидкости широко используется в практике для создания мощных пружин, которые применяются в качестве амортизаторов самолетных шасси и опор для тяжелых машин и установок, буферных устройств для затормаживания больших масс на малых участках пути, а также устройств для предохранения от перегрузок (для предотвращения пиков нагрузки на столах станков и прессов) и в качестве импульсных гидроприводов. Благодаря высокому модулю упругости жидкости молено полупить усилия сжатия пружины, измеряемые десятками и сотнями тонн при относительно небольших диаметрах цилиндров. Эти пружины отличаются высоким быстродействием и высокочастотными характеристиками число ходов жидкостной пружины доводится до 400 двойных ходов в минуту. При применении же их в виброиспытательных установках небольших амплитуд частота вибраций достигает 100 гц. Принципиальная схема неидкостной пружины приведена на рис. 1.11, а. Прунеина состоит из  [c.30]

В прошлом управление примитивной гидравлической системой, подобной системе управления шасси, заключалось в изменении положения распределительных клапанов при помощи ручного привода или от соленоида. Однако чтобы приводить в действие поверхности управления и другое аналогичное оборудование современных самолетов, усилие, прилагаемое пилотом, должно увеличиваться в определенной необходимой пропорции. Это обеспечивает электронный или иной усилитель. На весьма многих самых современных самолетах с высокими летными характеристиками для приведения в действие поверхностей управления в настоящее время используются гидроусилители. На большинстве самолетов для выполнения таких вспомогательных операций, как корректировка при отклонении от заданного положения в продольном и поперечном направлении, устранение сноса при порывах ветра и управление самолетом при помощи радиолокатора, независимо от того, осуществляются эти олерации пилотом или автоматически, также используются высокочувствительные гидроусилители с электрическим управлением. В ракетах высокочувствительные гидроусилители обычно используются в комплексе с электронным автопилотом, что позволяет достичь значительно более высоких эксплуатационных качеств, чем у существующих самолетов.  [c.340]

На рис. 6.6 приведены данные, характеризующие отношение реактивной тяги двигателей к массе самолета Т/М) для ряда американских и советских самолетов одного поколения. Как видно из рисунка, характеристики Т/М у американских истребителей ниже, чем у советских, что обусловливает различие тактико-технических характеристик истребителей. В связи с згим в США особенно активизируется разработка углепластиков для самолетостроения, которые используются наряду с конструкционными материалами на основе борных волокон. Углепластики составляют около 2% массы самолетов F-14 и F-15 и используются вместе с боропластиками для производства верхних плоскостей несущих крыльев, створок люков шасси и аэродинамических тормозов. В самолете F-16 из углепластиков изготавливают также горизонтальное хвостовое оперение, вертикальные стабилизаторы, и некоторые детали, которые ранее получали из боропластиков. Первоначально аэродинамический тормоз самолета F-15 изготовляли из.металлических материалов. Использование углепластиков в качестве наружного материала Сандвичевой констрз/кции с заполнением алюминиевыми сотами позволяет снизить массу аэродинамического тормоза с 50,8 до 38,6 кг, т. е. приблизительно на 24%.  [c.212]

Существуют и другие подходы для определения критических параметров (в частности, скорости полета) на границе устойчивости. Для этого в уравнениях свободных колебаний (38) полагают Я, = ш и находят значения скорости, удовлетворяющие этим уравнениям. Критическую скорость флаттера можно также определить экспериментально в аэродинамической трубе на динамически подобной модели и в процессе летных испытаний летательного аппарата. В последнем случае прибегают к экстраполяции, чтобы по тенденции определяющих флаттер параметров с ростом скорости полета найти приближенно величину критической скорости флаттера. Возникновение флаттера связано с определенным тоном свободных упругих колебаний в потоке воздуха. Распределение деформаций по конструкции при потере устойчивости определяет комплексную форму колебаний флаттерного тона. В зависимости от преобладания амплитуд той или иной части ЛА и характера деформированного состояния различают виды флаттера. Например изгибно-крутильный флаттер крыла, изгибно-изгибный флаттер в системе стреловидное крыло — фюзеляж, изгибно-элеронный флаттер, рулевой флаттер и т. д. Для характеристик флаттера несущих поверхностей часто определяющее значение имеют различные грузы, размещенные иа них двигатели, подвесные баки с горючим, шасси. Существенными параметрами являются жесткости крепления этих тел на поверхности крыла. Вообще для флаттера принципиально важны параметры связаииости форм движения. Например, для совместных колебаний изгиба и кручения крыла такими параметрами являются координаты точек (линий) приложения сил аэродинамического давления, инерции и упругости. Смещение центра масс относительно оси жесткости вперед способствует стабилизации системы. Совмещение всех трех точек развязывает виды колебаний, и в этом случае флаттер невозможен. Это свойство обычно имеют в виду при динамической компоновке конструкции. Важными параметрами являются распределенные нли сосредоточенные жесткости. Последние характерны для органов управления  [c.490]

При вращенни несущего винта вертолета на земле отклонения лопастей относительно вертикальных шарниров и перемещения втулки в горизонтальном направлении вследствие податливости шасси составляют степени свободы колебательной системы. При определенных значениях угловой скорости и некоторых конструктивных параметров в этой системе может возникнуть опасная колебательная неустойчивость [25]. Для предотвращения этих колебаний устанавливают специальные демпферы на вертикальных шарнирах лопастей и выбирают соответствующие характеристики амортизации шасси.  [c.507]

Свойство сжимаемости жидкости используется в практике для получения мощных пружин (амортизаторов), которые шиппко применяются в качестве амортизаторов самолетных шасси, в металлообрабатывающих станках и в качестве пружины во многих системах и установках. Так, например, благодаря своим высокочастотным характеристикам жидкостная пружина используется в виброиспытательных установках, часто га вибраций которых достигает при небольших амплитудах 100 гц.  [c.391]


В классическом анализе земного резонанса учитываются четыре степени свободы продольное и поперечное перемещения втулки несущего винта в плоскости вращения и две степени свободы циклического качания лопасти. Фактические колебания вертолета на шасси сопровождаются также наклоном вала винта, однако перемещение втулки в плоскости вращения является в данном случае доминирующим фактором. Аэродинамические силы несущего винта слабо влияют на земной резонанс по сравнению с упругими и инерционными силами по этой причине в анализе их не учитывают. Такая модель дает удовлетворительное описание основных характеристик земного резонанса и даже хорошие численные результаты, особенно для шарнирных несущих винтов. В некоторых случаях, в частности для бесшарнирных винтов, требуется более сложная модель, учитывающая аэродинамику несущего винта и маховое движение лопастей и более точно описывающая динамику опоры. Основы анализа земного резонанса заложены работой Коулмена и Фейнголда [С.77].  [c.613]

Проводилось изучение физико-механических характеристик морского льда и снегольда с обоснованием методов испытания натурных фрагментов и учетом их температуры, плотности и влажности. Установленные законы деформирования ледяного покрова при статическом и динамическом нагружении самолетной нагрузкой, а также разработанные практические методы расчета минимально необходимой его толщины для тяжелых самолетов позволили выбирать подходящие ледовые поля и обеспечивать безопасность полетов авиации. Кроме того, были установлены и экспериментально уточнены параметры снежного слоя на ледяном покрове, предохраняющего лед от интенсивного и неравномерного таяния в летнее время и растрескивания при резких температурных перепадах, а также метод регулирования таяния ледяных полей в летний период, который обеспечил постоянную пригодность ледовых аэродромов для работы самолетов с колесными шасси и стал одним из достижений теории и практики в области ледотехиики.  [c.20]

Инертность, таким образом, есть некоторое присущее каждому телу свойство, которое проявляется в его способности отзываться большим или меньшим ускорением на действие данной силы. Для количественной характеристики инертности служит физическая величина, называемая массой тела и обозначаемая буквой т. Шасса есть мера инертности тел. Масса тела не зависит от того, где это тело находится на Земле, на Луне или в открытом космическом пространстве.  [c.48]


Смотреть страницы где упоминается термин Шасси характеристики : [c.212]    [c.352]    [c.4]    [c.208]    [c.272]    [c.627]    [c.282]    [c.1017]   
Машиностроение Энциклопедический справочник Раздел 4 Том 11 (1948) -- [ c.202 , c.203 , c.206 ]



ПОИСК



Шасси



© 2025 Mash-xxl.info Реклама на сайте