Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Лагранжа натуральные системы уравнении

Для обоснования принципа Гамильтона были использованы уравнения Лагранжа в независимых координатах. Сами же эти уравнения в случае натуральной системы были получены из общего уравнения динамики  [c.107]

Подобно принципу Гамильтона ( 3.7), принцип наименьшего действия выражает необходимые и достаточные условия движения. Поэтому из пего можно вывести уравнения движения. Однако это сделать значительно трудней, чем из принципа Гамильтона, вследствие ограничения Е = h, накладываемого на движения вдоль варьированных путей. В этом случае мы имеем вариационную задачу Лагранжа. Мы приведем здесь этот вывод для натуральной системы. Согласно принципу наименьшего действия функционал h  [c.546]


Натуральная механическая система — тройка (М, йз, У), где М — гладкое п-мерное многообразие (конфигурационное пространство), ds — риманова метрика на М (которая задает кинетическую энергию системы = ds/dt) /2), У — гладкая функция на М (потенциал поля сил). Движения натуральной системы — это отображения т А М (Д — интервал в К), удовлетворяющие в локальных координатах на М уравнениям Лагранжа с лагранжианом = 5 + У. Так как форма  [c.130]

Используя эти ранее установленные факты, мы получим теперь уравнения, специально приспособленные для описания движений в потенциальных полях, и изучим некоторые общие свойства таких движений. Весь материал этой главы в равной мере относится к системам, для которых существует обобщенный потенциал. Более того, за редкими исключениями, которые будут далее оговорены, он относится как к натуральным, так и к ненатуральным системам (см. 5 гл. IV). о связано с тем, что далее мы будем исходить из предположения, что движение системы может быть описано уравнениями Лагранжа (4), и лишь в отдельных особо оговариваемых случаях будем предполагать, что  [c.259]

Натуральная механическая система — это тройка М,Т,У), где N—гладкое многообразие (пространство положений), Т — риманова метрика на N (кинетическая энергия), V — гладкая функция на N (потенциал силового поля). Движения такой системы — гладкие отображения К —> Л , являющиеся экстремалями функционала действия Ь[д 1),д 1)) <И, где д 1) — касательный вектор к в точке д[1), Ь — Т — V — функция Лагранжа. Изменение со временем локальных координат д на. N описывается уравнением  [c.23]

Определение. Системы, описываемые уравнениями Лагранжа (6), где L - квадратичная функция д, называются натуральными.  [c.224]

Уравнения Гамильтона можно составлять для таких систем, динамика которых полностью задается функцией Лагранжа Ь(1,ц,д). Рассматриваются не только натуральные (механические) системы Ь = Т — П), поэтому на Ь накладывается условие (0.3)  [c.77]


Смотреть страницы где упоминается термин Лагранжа натуральные системы уравнении : [c.77]    [c.512]   
Аналитическая динамика (1999) -- [ c.81 ]



ПОИСК



Лагранжа натуральные системы

Лагранжа система уравнений

Лагранжева система

Лед натуральный

Натуральные системы .уравнений

Система Лагранжа

Система натуральная

Уравнения Лагранжа



© 2025 Mash-xxl.info Реклама на сайте