Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Уравнения движения для неголономных систем с множителями Лагранжа

В этом случае уравнения движения неголономной системы с множителями Лагранжа имеют вид  [c.146]

Примеры. 1. При помощи уравнений Аппеля определим движение системы, описанной в примере 3 (см. стр. 28). Это позволит читателю сопоставить два метода отыскания движения неголономной системы — с помощью множителей Лагранжа и с помощью уравнений Аппеля — и убедиться в преимуществах второго. Введем в качестве независимых координат координаты центра стержня л", v и угол [c.73]


Поскольку движение систем с дифференциальными связями нередко описывают уравнениями, содержащими реакции этих связей или неопределенные множители Лагранжа, то применение теории Рауса к таким системам требует особой внимательности [14, 20]. Дело в том, что указанные выше уравнения систем с дифференциальными связями не могут быть представлены в виде (1), так как для реакций связей или неопределенных множителей Лагранжа нет соответствующих дифференциальных уравнений. Поэтому для применения теории, изложенной в предыдущих параграфах, к неголономным системам, необходимо исключить зависимые скорости из выражений всех первых интегралов указанных уравнений движения системы с помощью уравнений неголономных связей. При этом полученные функции будут представлять собой первые интегралы уравнений движения рассматриваемой системы, записанных в форме Чаплыгина (см. следующий параграф), Воронца, Больцмана-Гамеля и др., которые не содержат реакции связей и неопределенные множители Лагранжа и представимы в виде (1), а сами первые интегралы примут вид (2).  [c.436]

Уравнения Аппеля. Применение уравнений Лагранжа с неопределенными множителями при составлении уравнений движения механизма с неголономными связями приводит к необходимости совместного решения системы уравнений, число которых превышает число степеней свободы на удвоенное число неголономных связей. Поэтому для изучения динамики механических систем с неголономными связями неоднократно предлагались дифференциальные уравнения, применение которых позволяет уменьшить число совместно решаемых уравнений. Из этих уравнений рассмотрим лишь уравнения Аппеля ).  [c.157]

Таким образом, показано, что и при существовании связей (голономных) уравнения движения можно записать в форме Лагранжа. Дальнейшее обобщение возможно только применительно к таким неголономным системам, для которых связи выражаются как неинтегрируемые дифференциальные соотношения. Рассмотрение этого случая мы отложим до изучения вариационных принципов в гл. VI. Тогда можно будет изложить и способ (метод неопределенных множителей) для определения величин реакций связей.  [c.34]

Первым опубликовал в 1897 г. уравнения движения для систем с неголономными связями С. А. Чаплыгин. Уравнения Чаплыгина не содержали неопределенных множителей Лагранжа они были выведены для частного случая неголономных систем, вполне циклических по современной терминологии, т. е. таких, для которых кинетическая энергия системы, силовая функция заданных сил и уравнения неголономных связей обладают одним и тем же числом одних и тех же циклических координат. Подобные системы практически встречаются часто, и поэтому уравнения Чаплыгина приобрели широкую известность, несмотря на некоторые затруднения вычислительного порядка, связанные с тем, что кинетическая энергия системы входит в уравнения Чаплыгина в двух видах. Приводим уравнения Чаплыгина  [c.4]


При выводе уравнений с множителями Лагранжа применяется, как известно, аксиома о связях, т. е. вводятся в рассмотрение, наряду с известными активными силами, еще неизвестные силы (управляющие воздействия), обеспечивающие вместе с данными силами реализацию искомого движения, согласно заданным связям. Иначе говоря, выводятся уравнения движения как бы голономной системы в них неизвестные силы входят через множители Лагранжа и только тогда, после вывода уравнений движения, к ним присоединяются уравнения неголономных связей.  [c.7]

Вместе с развитием неголономных связей и теории общего их вида приобретают значение новые методы в поисках решений классических задач аналитической механики. Такие новые методы базируются, можно сказать, на двух теоремах. Первая теорема высказана в работах П. В. Воронца в первых десятилетиях нашего века в следующей формулировке каждый первый интеграл уравнений движения некоторой механической системы может считаться уравнением связи, наложенной на систему с соответствующими реакциями, равными нулю . Действительно, примем данный первый интеграл за связь и составим уравнения движения с множителем. Далее, учитывая, что первый интеграл тождественно удовлетворяет левым частям всех уравнений с множителем, мы придем к тому, что данный множитель должен быть равен нулю. Обратная же теорема должна читаться следующим образом. Положим, дана механическая система с заданными, пусть идеальными в смысле Лагранжа — Даламбера, связями и активными силами. Имеются динамические дифференциальные уравнения данной системы. Положим, требуется найти янтеграл заданного вида для дайной системы уравнений. Тогда, 1при-няв данный интеграл за уравнение дополнительной связи, будем составлять уравнения движения с подобной связью. Интеграл же может быть любой аналитической структуры, поскольку мы умеем уже составлять уравнения движения при связях любой, если можно так сказать, неголономности. Далее, если мы решим расширенную систему уравнений движения, т. е. уравнений с множителем вместе с уравнением связи, то могут быть две возможности находятся уравнения движения системы, т. е. обобщенные координаты основной задачи в функциях времени и вместе с ними определяется множитель в функции времени. Но, если при каких-либо параметрах системы, или предполагаемого первого интеграла, или при некоторых начальных данных, множитель обратится в ноль, то тогда действительно уравнение связи окажется первым интегралом данной задачи. Возьмем, к примеру, классическую задачу о движении твердого тела вокруг неподвижной точки. Мы знаем, с каким трудом добывались решения этой задачи и как, по существу, их мало. Всего три случая — общего решения, да и общность относится только к начальным условиям, а на другие параметры — распределение масс и положение центра тяжести — налагаются определенные условия. Частных интегралов больше, но все они находились с трудом (вспомним, например, случай Гесса). Данные же методы наиболее естественны нри выяснении вопроса, является ли заданная связь -первым интегралом уравнений движения данной системы как свободной.  [c.13]

Задача о движении системы с го-лономными связями формально всегда может быть решена, что частично объясняется возможностью исключения зависимых координат. Однако для задач с неголономными связями общего метода решения не существует. Правда, дифференциальные уравнения неголономных связей можно рассматривать совместно с дифференциальными уравнениями движения и тогда можно исключить зависимые величины с помощью метода множителей Лагранжа, который мы рассмотрим позже. Однако в более специальных случаях неголономных связей требуется индивидуальный подход к каждой задаче. При формальном изложении классической механики почти всегда предполагается, что любая имеющаяся связь является голономной. Это ограничение несколько сужает применимость общей теории, несмотря на то, что в повседневной практике нередко встречаются неголоном-ные связи. Причина этого состоит в том, что связи, наложенные на систему, обычно реализуются посредством различных поверхностей, стенок или стержней и играют заметную роль лишь в макроскопических задачах. Но современных физиков интересуют главным образом микроскопические системы, в которых все объекты (как внутри системы, так и вне ее) состоят из молекул, атомов и еще более мелких частиц, порождающих определенные силы. Понятие связи становится в таких случаях искусственным и встречается редко. Связи используются здесь лишь как математические идеализации, полезные при описании  [c.25]



Смотреть главы в:

Введение в аналитическую механику  -> Уравнения движения для неголономных систем с множителями Лагранжа

Введение в аналитическую механику  -> Уравнения движения для неголономных систем с множителями Лагранжа



ПОИСК



Движение системы

Лагранжа движения

Лагранжа система уравнений

Лагранжа уравнение движения

Лагранжева система

Лагранжево движения

Множитель

Множитель Лагранжа

Множитель системы уравнений

Неголономные системы, уравнения

Неголономные системы, уравнения движения

Система Лагранжа

Системы Уравнение движения

Системы неголономные

Уравнение с множителем

Уравнения Лагранжа

Уравнения движения неголономных систем с множителями Лагранжа. Реакции идеальных неголономных связей



© 2025 Mash-xxl.info Реклама на сайте