Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Уравнения движения системы в независимых координатах (уравнения Лагранжа второго рода)

Уравнения Лагранжа второго рода представляют собой дифференциальные уравнения движения несвободной системы, составленные в обобщенных координатах. Наибольшее распространение получили уравнения в независимых обобщенных координатах, — их обычно называют уравнениями Лагранжа второго рода, а иногда просто уравнениями Лагранжа, так как уравнениями Лагранжа первого рода пользуются сравнительно редко.  [c.394]

Система (25.8) заменяется системой Зп — к дифференциальных уравнений в независимых (или обобщенных) координатах, не содержащих явно сил реакций и называемых уравнениями Лагранжа второго рода (или просто уравнениями Лагранжа). Эти уравнения позволяют сначала найти закон движения системы, а затем с помощью уравнений (25.8) определить и неизвестные силы реакций.  [c.149]


Уравнения движения системы в независимых координатах (уравнения Лагранжа второго рода). Если неинтегрируемые дифференциальные связи отсутствуют и координаты q независимы, т. е. Ь  [c.331]

При исследовании движения связанных механических систем, как об этом указывалось в 25, наиболее широко используются дифференциальные уравнения движения в обобщённых (или независимых) координатах, получившие название уравнений Лагранжа второго рода (в дальнейшем мы будем называть их просто уравнениями Лагранжа). Эти уравнения замечательны тем, что не содержат явно неизвестные силы реакций связей, что существенно упрощает решение основной динамической задачи, связанной с движением несвободной системы, — отыскание и исследование законов ее движения. Большое значение уравнения Лагранжа имеют также и для динамики свободных систем, по отношению к которым они являются уравнениями движения в произвольных криволинейных координатах.  [c.159]

Принцип Мопертюи-Лагранжа. При заданной константе энергии h уравнения движения консервативной или обобщенно консервативной системы могут быть записаны в форме уравнений Якоби (см. уравнения (36) п. 152). Эти уравнения имеют форму уравнений Лагранжа второго рода, где в качестве функции Лагранжа L выступает функция Якоби Р, а роль независимой переменной играет обобщенная координата qi. По аналогии с действием S по Гамильтону введем действие по Лагранжу  [c.483]

Как уже отмечалось, уравнения Лагранжа с реакциями-связей дают возможность найти и положение точек системы, и реакции связей как функции времени. Однако на практике часто не нужна столь подробная информация о механической системе, а требуется найти лишь закон движения точек по связям. Для разрешения таких задач необходимы уравнения движения, которые в качестве неизвестных содержат только независимые координаты. С другой стороны, эти уравнения должны полностью учитывать влияние связей на систему. Такие уравнения существуют и называются уравнениями Лагранжа в независимых координатах (или уравнениями Лагранжа второго рода). Значение этих уравнений не исчерпывается применением к указанному типу задач. Если требуется определить реакции связей, зачастую проще с помощью уравнений Лагранжа второго рода определить закон движения системы, а затем с помощью уравнений Лагранжа первого рода найти реакции связей. Уравнения Лагранжа второго рода имеют большое значение и для свободных систем. В этом случае они  [c.214]

Наиболее простым и удобным методом составления уравнений движения механизмов является метод лагранжевых уравнений. При составлении уравнений Лагранжа второго рода предполагается, что движение механизма исследуется в системе обобщенных координат, в качестве которых должны быть приняты независимые параметры, определяющие положение механизма, например, углы по-  [c.486]

Голономная система. Вьшод уравнений движения голономной механической системы в независимых координатах - уравнений Лагранжа второго рода - приведен на схеме 23. Он состоит в преобразовании общего уравнения динамики, выражающего принцип Даламбера - Лагранжа к независимым координатам. Разбиваем исходное уравнение на два слагаемых. Первое  [c.231]


Предварительные замечания. Вопрос об определении движения несвободной материальной системы без неинтегрируемых связей может быть решён двояким путём или исчтегрированием уравнений движения, содержащих множители связей, а именно уравнений Лагранжа первого рода ( 177), когда система координат декартова, и уравнений, аналогичных названным, когда система координат произвольная ( 189), или интегрированием уравнений Лагранжа второго рода в независимых координатах ( 191). Последние уравнения быстрее и непосредственнее приводят к цели в них число переменных доведено до надлежащего минимума, поэтому и произвольных постоянных интеграции появляется наименьшее число. Интегрирование уравнений с множителями значительно сложнее число переменных в них превышает Необходимое, а потому и число произвольных постоянных интеграции больше, чем нужно для искомого движения ( 119, 121, 177, 189). Но зато движение системы определяется  [c.461]


Смотреть страницы где упоминается термин Уравнения движения системы в независимых координатах (уравнения Лагранжа второго рода) : [c.88]   
Смотреть главы в:

Теоретическая механика  -> Уравнения движения системы в независимых координатах (уравнения Лагранжа второго рода)



ПОИСК



0 независимые

I рода

I рода II рода

Движение второго рода

Движение системы

Движения независимые

Координаты Лагранжа

Координаты лагранжевы

Координаты независимые

Координаты системы

Лагранжа 1-го рода

Лагранжа 1-го рода 2-го рода

Лагранжа движения

Лагранжа координаты второго рода

Лагранжа система уравнений

Лагранжа уравнение движения

Лагранжа уравнения второго

Лагранжа уравнения второго рода

Лагранжева система

Лагранжева система координат

Лагранжево движения

Независимость

Родан

Родиан

Родий

Родит

Система Лагранжа

Системы Уравнение движения

Системы координат . 4. Уравнения для

Системы независимые

Уравнения Лагранжа

Уравнения Лагранжа 2-го рода

Уравнения Лагранжи второго род

Уравнения МСС в лагранжевых координатах

Уравнения в координатах

Уравнения второго рода

Уравнения движения в лагранжевых координатах

Уравнения движения в независимых координатах

Уравнения движения несвободной системы в обобщённых координатах. Уравнения движения в независимых координатах (уравнения Лагранжа второго рода)

Уравнения- Лагранжа в независимых координатах



© 2025 Mash-xxl.info Реклама на сайте