Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Уравнения движения несвободных систем Уравнения Лагранжа первого рода

Общая методика исследования движения системы в этом случае, по существу, не отличается от методики, рассмотренной в 7 при изучении применения уравнений Лагранжа первого рода к нахождению закона движения несвободной системы. Рассмотрим этот вопрос подробнее.  [c.136]

Уравнения движения несвободной системы в декартовых координатах (уравнения Лагранжа первого рода). На основании найденных нами выражений (30.15) для реакций связей уравнения движения  [c.298]


Динамические уравнения движения несвободной материальной системы, ограниченной двусторонними идеальными (голономными или неголономными) связями, называются уравнениями Лагранжа первого рода. 2. Уравнения голономных связей не содержат никаких производных от координат.  [c.20]

Уравнения Лагранжа второго рода представляют собой дифференциальные уравнения движения несвободной системы, составленные в обобщенных координатах. Наибольшее распространение получили уравнения в независимых обобщенных координатах, — их обычно называют уравнениями Лагранжа второго рода, а иногда просто уравнениями Лагранжа, так как уравнениями Лагранжа первого рода пользуются сравнительно редко.  [c.394]

XXX. РЕАКЦИИ СВЯЗЕЙ. УРАВНЕНИЯ ДВИЖЕНИЯ НЕСВОБОДНОЙ МАТЕРИАЛЬНОЙ СИСТЕМЫ В ДЕКАРТОВЫХ КООРДИНАТАХ (УРАВНЕНИЯ ЛАГРАНЖА ПЕРВОГО РОДА)  [c.291]

Уравнение (28.2) называют также общим уравнением динамики голономных систем. Действительно, если уравнение (28.2) принять в качестве основной и единственной аксиомы, то простыми преобразованиями из него можно получить любые уравнения движения несвободной механической системы, т. е. как уравнения Лагранжа первого рода (26.11), так и уравнения Лагранжа в обобщенных координатах.  [c.160]

Основным различием между уравнениями Лагранжа первого и второго рода систем с конечным числом степеней свободы является то, что уравнения Лагранжа первого рода содержат компоненты реакций связей, а уравнения Лагранжа второго рода эти компоненты не содержат. Достигнуть исключения компонент реакций геометрических и интегрируемых кинематических связей из уравнений движения системы с конечным числом степеней свободы можно, введя соответствующим образом выбранные обобщенные координаты. Если выразить позиционные координаты системы через целесообразно выбранные обобщенные координаты, уравнения геометрических и кинематических интегрируемых связей должны быть тождественно удовлетворены. Это позволяет отделить задачу определения закона движения системы от задачи определения реакций связей [40]. Если на систему наложены кинематические неинтегрируемые связи, задача осложняется, хотя и здесь можно локально достигнуть исключения компонент реакций связей посредством введения неголономных координат (квазикоординат), но полное разделение исследования движения несвободной системы на определение закона движения и определение реакций связей возможно лишь в частных случаях.  [c.56]


Поэтому обычно выбирают иной способ определения движения несвободной материальной системы с интегрируемыми связями, а именно предварительно определяют закон движения точек системы, применяя систему уравнений Лагранжа второго рода (эти уравнения рассматриваются ниже). Из уравнений Лагранжа первого рода определяют реакции связей.  [c.36]

Уравнения эти носят название уравнений несвободного движения с множителями, или уравнений Лагранжа первого рода. Система уравнений  [c.299]

Уравнения (7) называются дифференциальными уравнениями криво--шнвйного движения несвободной материальной точки в проекциях на оси декартовой системы координат, или уравнениями Лагранжа первого рода. Эти уравнения и уравнение связи (4) представляют собой систему четырех уравнений, из которых могут быть определены четыре неизвестных функций времени х, у, г, а. В результате найдем закон движения точки, а по формуле  [c.481]

Предварительные замечания. Вопрос об определении движения несвободной материальной системы без неинтегрируемых связей может быть решён двояким путём или исчтегрированием уравнений движения, содержащих множители связей, а именно уравнений Лагранжа первого рода ( 177), когда система координат декартова, и уравнений, аналогичных названным, когда система координат произвольная ( 189), или интегрированием уравнений Лагранжа второго рода в независимых координатах ( 191). Последние уравнения быстрее и непосредственнее приводят к цели в них число переменных доведено до надлежащего минимума, поэтому и произвольных постоянных интеграции появляется наименьшее число. Интегрирование уравнений с множителями значительно сложнее число переменных в них превышает Необходимое, а потому и число произвольных постоянных интеграции больше, чем нужно для искомого движения ( 119, 121, 177, 189). Но зато движение системы определяется  [c.461]


Смотреть страницы где упоминается термин Уравнения движения несвободных систем Уравнения Лагранжа первого рода : [c.31]   
Смотреть главы в:

Теоретическая механика  -> Уравнения движения несвободных систем Уравнения Лагранжа первого рода



ПОИСК



I рода

I рода II рода

В первого рода

Движение несвободное

Движение первого рода

Движение системы

Лагранжа 1-го рода

Лагранжа 1-го рода 2-го рода

Лагранжа движения

Лагранжа первого рода

Лагранжа система уравнений

Лагранжа уравнение движения

Лагранжа уравнение первого рода

Лагранжа уравнения первого род

Лагранжева система

Лагранжево движения

Реакции связей. Уравнения движения несвободной материальной системы в декартовых координатах (уравнения Лагранжа первого рода)

Родан

Родиан

Родий

Родит

Система Лагранжа

Система несвободная

Системы Уравнение движения

Уравнения Лагранжа

Уравнения Лагранжа 2-го рода

Уравнения Лагранжа Уравнения Лагранжа первого рода

Уравнения движения Лагранжа первого рода

Уравнения движения несвободной

Уравнения движения несвободной системы в декартовых координатах (уравнения Лагранжа первого рода)

Уравнения движения первого рода

Уравнения первого рода



© 2025 Mash-xxl.info Реклама на сайте