Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Лагранжиана элементарная

Составляя уравнение Даламбера — Лагранжа элементарных работ всех сил, включая и силы инерции, на возможных перемещениях, получаем следующее равенство  [c.309]

Остановив систему и действуя на нее этими потерянными силами, мы должны иметь равновесие. Но если система находится в равновесии, то на основании начала Лагранжа элементарная работа всех действующих сил для всех возможных перемещений системы должна быть нулем или меньше нуля. Поэтому будем иметь  [c.491]


Принцип возможных перемещений, или принцип Лагранжа, содержит необходимые и достаточные условия равновесия некоторых механических систем. Он формулируется следующим образом для равновесия механической системы, подчиненной идеальным, стационарным ы неосвобождающим связям, необходимо и достаточно, чтобы сумма -элементарных работ всех активных сил, приложенных к точкам системы, была равна нулю на любом возможном перемещении системы, если скорости точек системы в рассматриваемый момент времени равны нулю, т. е.  [c.387]

Задача 176. Решить с помощью уравнений Лагранжа задачу 143 (см. 124). Решение. Механизм имеет одну степень свободы (см. рис. 314) и его положение определяется координатой ф (перемещении элементарная работа бЛх будет иметь выражение, совпадающее с выражением dA в задаче 143, если только заменить в нем <1ф на бф. Следовательно,  [c.381]

Итак, построение динамической модели состоит в приведении сил (определение Ml ) и в приведении масс (определение / F). Подчеркнем при этом, что динамическая модель должна быть обязательно построена.так, чтобы было выполнено уравнение (4.1) иначе сам переход от заданного реального механизма к его модели становится бессмысленным. Выполнение же уравнения (4.1), как следует из уравнения Лагранжа II рода, будет обеспечено в том случае, если при приведении сил будет соблюдено условие равенства элементарных работ, а при приведении масс — условие равенства кинетических энергий.  [c.145]

В предыдущих главах было показано, что уравнения Лагранжа обычно представляют собой систему нелинейных дифференциальных уравнений. Если же ограничиться исследованием движений, происходящих вблизи положения равновесия, то уравнения Лагранжа можно упростить — они заменяются в этом случае приближенными линейными дифференциальными уравнениями. Решения таких уравнений хорошо изучены, их можно записать в замкнутой форме с помощью элементарных функций, и это позволяет детально исследовать данный класс движений.  [c.207]

Равновесие свободного абсолютно твердого тела. Условия равновесия абсолютно твердого тела, выведенные в элементарной статике, вытекают из общего условия равновесия (условия Лагранжа) как частный случай. Пусть имеем свободное абсолютно твердое тело, на которое действ) ют силы F .  [c.301]


И. Бернулли, Лагранж). Конфигурация системы N материальных точек, на которые наложены идеальные двусторонние стационарные связи, допускающие в этой конфигурации тождественное равенство нулю скоростей всех точек системы, будет положением равновесия (определение 4.1.1) тогда и только тогда, когда в любой момент времени равна нулю сумма элементарных работ всех активных си.г Г,/, действующих на систему, на любом виртуальном перемещении = 1,.. ., Л точек их приложения  [c.343]

Соотношение (81.21) или (81.21 ) составляет содержание принципа Лагранжа сумма элементарных работ активных сил, действующих на уравновешенную механическую систему, на виртуальных перемещениях (или скоростях) равна нулю, если связи идеальны.  [c.113]

Вариационный принцип Лагранжа. В соответствии с гипотезой сплошности тело может рассматриваться как система материальных точек и к нему можно применить принцип возможных перемещений Лагранжа для равновесия системы материальных точек со стационарными неосвобождающими и идеальными связями необходимо и достаточно, чтобы сумма элементарных работ всех действующих на систему активных сил на любых возможных перемещениях системы была равна нулю.  [c.122]

Другим более общим определением устойчивости состояния равновесия в рамках первой элементарной концепции является определение Лагранжа. По Лагранжу исходное состояние упругой сис-318  [c.318]

Сначала здесь рассматриваются уравнения Лагранжа второго рода для материальной системы с голономными стационарными связями в неголономной системе отнесения. Преобразуем обобщенные силы. Для этого составим выражение элементарной работы. Имеем  [c.157]

Таким образом, быстро вращающееся тяжелое твердое тело и случае Лагранжа совершает регулярную прецессию. Полученный вывод является приближенным. Он получен в предположениях элементарной теории гироскопов. В действительности движение ги-  [c.177]

Как было показано, принцип Даламбера позволяет записывать динамические уравнения движения в виде уравнений равновесия, так как при добавлении сил инерции к активным силам и силам реакций связен, действующим на систему, получается уравновешенная система сил. Но если система сил уравновешена, то к ней применим принцип возможных перемещений. Последовательное применение этих принципов к движущейся механической системе, на которую наложены идеальные стационарные голономные удерживающие связи, позволяет сформулировать принцип Даламбера— Лагранжа если к движущейся механической системе, на которую наложены идеальные стационарные голономные удерживающие связи, условно приложить силы инерции всех ее точек, то в каждый момент времени сумма элементарных работ активных сил и сил инерции равна нулю на любом возможном перемещении системы, т. е.  [c.288]

Книга представляет собой углубленный курс классической механики, написанный на современном уровне. Помимо краткого обзора элементарных принципов, в ней изложены вариационные принципы механики, задача двух тел, движение твердого тела, специальная теория относительности, уравнения Гамильтона, канонические преобразования, метод Гамильтона — Якоби, малые колебания и методы Лагранжа и Гамильтона для непрерывных систем и полей. Показывается связь между классическим развитием механики и его квантовым продолжением. Книга содержит большое число тщательно подобранных примеров и задач.  [c.2]

Следующим новшеством этой книги является включение в нее механики непрерывных систем и полей (гл. 11). Вообще говоря, эти вопросы охватывают теорию упругости, гидродинамику и акустику, однако в таком объеме они выходят за рамки настоящей книги и, кроме того, по ним имеется соответствующая литература. В противоположность этому не существует хорошей литературы по применению классических вариационных принципов к непрерывным системам, хотя роль этих принципов в теории полей элементарных частиц все время возрастает. Вообще теорию поля можно развить достаточно глубоко и широко еще до рассмотрения квантования. Например, вполне возможно рассматривать тензор напряжение — энергия, микроскопические уравнения неразрывности, пространство обобщенных импульсов и т. д., целиком оставаясь при этом в рамках классической физики. Однако строгое рассмотрение этих вопросов предъявило бы чрезмерно высокие требования к студентам. Поэтому было решено (по крайней мере в этом издании) ограничиться лишь элементарным изложением методов Лагранжа и Гамильтона в применении к полям.  [c.9]


Возможны, однако, и другие обобщения классической механики, порождаемые более тонкой аналогией. Мы видели, что принцип Гамильтона дает возможность компактно и инвариантно сформулировать уравнения механического движения. Подобная возможность имеется, однако, не только в механике. Почти во всех областях физики можно сформулировать вариационные принципы, позволяющие получить уравнения движения , будь то уравнения Ньютона, уравнения Максвелла или уравнения Шредингера. Если подобные вариационные принципы положить в основу соответствующих областей физики, то все такие области будут обладать в известной степени структурной аналогией. И если результаты экспериментов указывают на необходимость изменения физического содержания той или иной теории, то эта аналогия часто показывает, как следует произвести подобные изменения в других областях. Так, например, эксперименты, выполненные в начале этого века, указали на то, что как электромагнитное излучение, так и элементарные частицы обладают квантовой природой. Однако методы квантования были сначала развиты для механики элементарных частиц, описываемой классическими уравнениями Лагранжа. Если электромагнитное поле описывать с помощью лагранжиана и вариационного принципа Гамильтона, то методами квантования элементарных частиц можно будет воспользоваться для построения квантовой электродинамики (см. 11.5).  [c.60]

Глава XII этой книги содержит подробное исследование движения под действием центральной силы. В ней проводится изучение орбит для некоторых законов изменения силы, отличных от обычного закона обратной пропорциональности квадрату расстояния. Изложение ведется достаточно элементарно, без использования уравнений Лагранжа.  [c.108]

В следующей главе на примере сферического маятника мы убедимся, что величины Л можно толковать как реакции системы на воздействие (голономных и неголономных) связей . Там же мы увидим также, что фактическое определение величин Л должно производиться, исходя не из г произвольно выделенных уравнений, как это мы временно сделали при выводе уравнения (12.6), а из совокупности всех Зп уравнений Лагранжа. Нужно подчеркнуть, что метод лагранжевых множителей играет существенную роль не только для уравнений Лагранжа первого рода, но также и для уравнения значительно более общего типа (ср. гл. VI, 34) с другой стороны, этот метод встречается уже в элементарной теории максимумов и минимумов.  [c.95]

Мы не можем противостоять искушению дополнить наше рассмотрение относительного движения доказательством знаменитой теоремы Лагранжа (Парижская академия, 1772 г.) Проблема трех тел допускает строгое решение в элементарных функциях, если принять, что треугольник, образованный тремя небесными телами, постоянно остается подобным самому себе. При этом массы трех тел произвольны.  [c.233]

Доказательство, данное Лагранжем, довольно сложно. Его можно упростить, приняв с самого начала, как это делает Лаплас, что условие 1) выполнено. Каратеодори показал , однако, что и без этого допущения возможно элементарное доказательство теоремы Лагранжа. Его отправной точкой является наше векторное уравнение (29.4), переписанное в прямоугольных компонентах. Мы воспроизводим здесь с некоторыми изменениями доказательство Каратеодори.  [c.233]

Кроме этого движения по коническим сечениям, существует, по Лагранжу, класс движений, которые могут быть представлены в элементарных функциях и при которых три тела находятся на вращающейся прямой. Но на этом мы останавливаться не будем.  [c.240]

Мы выберем примеры, которые мы уже рассматривали с помощью элементарных методов, чтобы на них показать превосходство формального метода Лагранжа.  [c.256]

Можно прийти к элементарному определению геодезических линий, если описывать траектории с помощью уравнений Лагранжа пер-  [c.284]

Это фундаментальное уравнение было открыто независимо Эйлером и Лагранжем и обычно называется дифференциальным уравнением Эйлера — Лагранжа. Заметим, что оно было выведено элементарными средствами из условия стационарности суммы, заменяющей данный определенный интеграл.  [c.76]

Резюме. Задача минимизации определенного интеграла, содержащего неизвестную функцию и ее производную, может быть сведена к элементарной задаче минимизации функции многих переменных. Для этого интеграл заменяется суммой, а производная — отношением приращений. Условия, при выполнении которых первая вариация обращается в нуль, принимают форму разностного уравнения, которое в пределе переходит в дифференциальное уравнение Эйлера — Лагранжа.  [c.76]

Задача 2. Рассмотреть задачу о движении в однородном гравитационном поле V = mgz, используя прямоугольную систему координат. Здесь уравнения Лагранжа интегрируются элементарными средствами. Пользуясь описанной выше схемой, вычислить гамильтонову W -функцию, которая должна иметь вид  [c.298]

Кинетическая интерпретация биномов Лагранжа. Прежде чем иллюстрировать уравнения Лагранжа некоторыми элементарными приложениями, мы покажем на простейшем примере одной материальной точки Р интересную кинематическую интерпретацию лагранжевых биномов, входящих в левые части этих уравнений.  [c.307]

В заключение, опираясь на элементарную теорию гироскопа, рассмотрим задачу о движении тяжелого твердого тела вокруг неподвижной точки в случае Лагранжа (см. п. 105). Пусть динамически симметричное твердое тело весом Р имеет неподвижную точку О (рис. 107). В начальный момент оно расположено так, что ось симметрии Oz составляет угол в с вертикалью. Пусть тело закручено вокруг оси симметрии с угловой скоростью ji, направленной как показано на рис. 107. Момент Мо силы тяжести Р при любом направлении оси Oz горизонтален. Следовательно, вертикальная ось 0Z является осью прецессии. Ось гироскопа движется по поверхности конуса с углом при вершине, равным 20. Направление движения указано на рис. 107 стрелками.  [c.212]


Таким образом, быстро вращающееся тяжелое твердое тело в случае Лагранжа совершает регулярную прецессию. Полученный вывод является приближенным. Он получен в предположениях элементарной теории гироскопов. В действительности движение гироскопа отличается от регулярной прецессии. В частности, угол в не обязательно постоянен, он может изменяться в некотором интервале колебательное движение оси симметрии гироскопа называется нутацией.  [c.213]

Лагранж поставил себе цель свести динамику к чистому анализу. Он начинает с выражения элементарных динамических отношений в виде соответственных отношений между чисто алгебраическими величинами, и из полученных таким образом уравнений он выводит свои окончательные уравнения путем чисто алгебраического процесса. Некоторые величины (выражающие взаимодействия между частями системы, поставленными в зависимость между собой физическими связями) появляются в уравнениях движения составных частей системы, а исследование Лагранжа, рассматриваемое с математической точки зрения, есть метод исключения этих величин из конечных уравнений. Следя за постепенным ходом этих исключений, ум занимается вычислениями, оставляя в стороне динамические идеи ).  [c.796]

Чтобы из принципа возможных перемещений получить уравнения равновесия нити, нужно вычислить сумму работ всех активных сил на произвольном возможном перемещении всей нити, принимая во внимание, что возможные перемещения стеснены условием нерастяжимостн и несжимаемости нити. Для этой цели можно использовать метод неопределенных множителей Лагранжа. Элементарная работа силы Рйз, действующей на элемент йз, на возможном перемещении элемента имеет вид  [c.197]

Таким образом, согласно общему уравнению динамики, в любой момент движения сиетемы с идеальными связями сумма элементарных работ всех активных сил н сил инерции точек системы равна нулю на любом возможном перемещении системы, допускаемом связями. Общее уравнение динамики (24) час го называю г объединенным принципом Да-ламбера Лагранжа. Его можно назвать лакже общим уравнением механики. Оно в случае равновесия системы при обращении в нуль всех сил инер щи точек системы переходит в нринцин возможных перемещений старики, только пока без доказательства его достаточности для равновесия системы.  [c.400]

Из полученного результата вытекает следующий принцип Даламбера — Лагранжа при движении механической системы с идеальными связями в каждый момент времени сумма элементарных работ всех приложенных активных сил и всех.сил инерции на любом возможном пережщении системы будет равна нулю.  [c.367]

Динамика твердого тела изучается на основе общих теорем об изменении кинетической энергии, кинетического момента и количества движения, а также с помощью основных понятий геометрии масс. Показывается, что аппарат динамики системы материальных точек применим для описания движения твердого тела и систем твердых тел. Проясняется вычислительная экономность использования уравнений Эйлера. Традиционно анализируются случаи Эйлера-Пуансо, Лагранжа-Пуассона, Ковгияевской [24]. В качест)зе примера методики по.чучения частных случаев интегрируемости приводятся случаи Гесса и Бобылева-Стеклова [6]. С целью демонстрации приложения развитых методов к практике даются основы элементарной теории гироскопов [14, 41], достаточные для качественного анализа действия гироскопических приборов.  [c.12]

Равенство (72.13) составляет содержание принципа Лагранжа — Даламбера при движении механической системы в неинерци-альной системе координат в неинерциальной системе координат, если на механическую систему наложены удерживающие идеальные связи, то сумма элементарных работ всех сил инерции, активных сил, переносных сил инерции и сил инерции Кориолиса, действующих на механическую систему на любом виртуальном перемещении, равна нулю в каждый данный момент времени.  [c.107]

Таким образом, согласно общему уравнению динамики, в любой момент двиэ сения системы с идеальными связями сумма элементарных работ всех активных сил и сил инерции точек системы равна нулю на любом возможном перемещении системы, допускаемом связями. Общее уравнение динамики (24) часто называют объединенным принципом Даламбера —Лагранжа. Его можно на-  [c.386]

В заключение, опираясь па элементарную теорию гироскопа рассмотрим задачу о движении тяжелого твердого тела вокруг неподвижной точки в случае Лагранжа (см. п. 105). Пусть динамически симметричное твердое тело весом Р имеет неподвижную точку О (рис. 107). В начальный момепт оно расиоложено так, что ось симметрии Oz составляет угол 0 с вертикалью.  [c.177]

Р авенство (2) или (3) и представляет собой общее уравнение динамики. Оно получено путем соединения двух общих принципов механики принципа Даламбера с принципом возможных перемещений, связанным с именем Лагранжа. Поэтому общее уравнение динамики иногда называется уравнением Лагранжа — Даламбера. Из него следует, что при любом движении механической системы с идеальными удерживающими связями в каждый данный момент сумма элементарных работ всех активных сил и всех условно приложенных сил инерции на всяком возможном перемещении системы равна нулю. При этом возможные перемещения нужно брать для фиксированного положения системы, соответствующего рассматриваемому моменту.  [c.780]

Как известно, уравнение Софи Жермев — Лагранжа как раз выражает условие равновесия элемента пластизгы Ах, с1г/, что и подчеркивается записью (8.41). Следовательно, L (w) — это интенсивность неуравновешенной суммарной нагрузки, возникающей по области интегрирования А (площади пластины) при задании прогибов в виде суммы (8.35). Удержание N членов в нем означает, что действительную систему заменили системой с N степенями свободы, в которой а (i = 1, 2,. . ., Л ) — это обобщенные перемещения, каждому из которых отвечает деформированное состояние, определяемое функцией fi (х, у). Для того чтобы дискретная система находилась в равновесии но принципу Лагранжа, падо, чтобы j работа всех элементарных сил системы, т. е.  [c.251]

Метод исследования движения жидкости, применяемый в гидравлике. Метод Лагранжа ввиду его сложности не нащел широкого применения в технической механике жидкости. Далее в основном будем пользоваться методом Эйлера. Однако, применяя его, все же не будем соверщенно отрекаться от рассмотрения движения частиц жидкости М. Мы будем следить за их движением, но не в продолжение времени t (как это следует по Лагранжу), а в продолжение только элементарного отрезка времени dt, в течение которого данная частица жидкости проходит через рассматриваемую точку пространства.  [c.73]

Система Лиувилля впервые рассматривалась в Journal de math., XIV, 1849, стр. 257. Интегрирование можно выполнить непосредственно с помощью уравнений Лагранжа, не прибегая к теореме Гамильтона — Якоби см., например, Уиттекер [27]. Другое элементарное доказательство см. далее в этой книге ( 26.9).  [c.329]



Смотреть страницы где упоминается термин Лагранжиана элементарная : [c.2]    [c.54]    [c.182]    [c.200]    [c.284]    [c.151]    [c.110]    [c.587]   
Линейная механика разрушения Издание 2 (2004) -- [ c.0 ]



ПОИСК



Лагранжиан

Лагранжиана элементарная Лагранжева (J.L.Lagrange)

Лагранжиана элементарная Эйлерова (L.Euler)



© 2025 Mash-xxl.info Реклама на сайте