Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Теория Принцип минимума потенциальной

Решение задачи теории упругости часто связано со значительными математическими трудностями. В этих случаях прибегают к принципам минимумов потенциальной или дополнительной энергии. Применение этих принципов заключается в отыскании функций, удовлетворяющих граничным условиям задачи, и минимизации потенциальной энергии П или дополнительной энергии R.  [c.215]

В 71 и 72 нами были изложены два хорошо известных в теории упругости вариационных принципа принцип минимума потенциальной энергии, который также называется принципом возможных перемещений, и принцип минимума дополнительной работы, на который ссылаются как на принцип Кастильяно.  [c.219]


Заметим, что установленный выше результат о минимуме функционала есть известный в теории упругости принцип минимума потенциальной энергии, состоящий в том, что из всех перемещений, удовлетворяющих граничным условиям в перемещениях, в действительности реализуются те из них, для которых потенциальная энергия минимальна.  [c.622]

Для исследования гармонических упругих волн в композиционной среде Кон с соавторами [37] использовали методы, основанные на теории Флоке и Блоха. Этот подход весьма подробно рассмотрен также в статье Ли [40]. Основная идея всех этих работ состоит в применении вариационных принципов в интегральной форме к отдельной ячейке композита. Эти вариационные принципы дают способ определения фазовых скоростей и распределения напряжений в волнах Флоке, распространяющихся в композиционной среде без изменения формы при переходе от ячейки к ячейке. Различные авторы использовали как принцип минимума потенциальной энергии деформации, так и принцип максимума дополнительной работы.  [c.382]

Необходимо здесь отметить, что формулировка законов механики в форме принципа Гамильтона имеет и то значение, что он позволяет установить, как нужно описывать немеханические системы с той же математической строгостью, которая характерна для классической механики. Принцип Гамильтона нельзя рассматривать как чисто механический принцип. Здесь интересно отметить, что есть закон, который во многом аналогичен принципу Гамильтона и который имеет очень общий характер. Этот закон часто служит физику трамплином для перепрыгивания провалов в экспериментальных данных. Он гласит, что всякая система стремится к состоянию с минимумом потенциальной энергии. Такое состояние, вообще говоря, будет равновесным, хотя и не обязательно. Это — важный эвристический метод физики. Например, в теории Бора мы говорим, что электрон спонтанно переходит из возбужденного в нормальное состояние, так как он стремится к состоянию с минимумом энергии. Впрочем, аналогичную формулировку можно дать и второму началу термодинамики, особенно в его вероятностной трактовке. Важен следующий факт если задано исходное состояние физической системы и ее энергетический баланс, то можно указать, в общем, направление, в котором будет происходить изменение состояния системы. Таким образом, этот, по сути дела, вариационный принцип минимума потенциальной энергии лежит в основе исследования задач устойчивого равно-  [c.865]


Известны три вариационные принципа теории упругости. Принцип минимума потенциальной энергии (принцип возможных перемещений) потенциальная энергия упругого тела, рассматриваемая как функционал произвольной системы перемещений, удовлетворяющей кинематическим граничным условиям, принимает минимальное значение для системы перемещений, фактически реализуемой в упругом теле. Принцип минимума дополнительной работы Кастильяно (понятие о дополнительной работе дано в конце этого параграфа) дополнительная работа упругого тела, рассматриваемая как функционал произвольной системы напряжений, удовлетворяющей уравнениям равновесия внутри тела и на его поверхности, принимает минимальное значение для системы напряжений, фактически реализуемой в упругом теле. Наконец, в вариационном принципе Рейсснера варьируются независимо друг от друга и перемещения, и тензор напряжений.  [c.308]

К 2. Принципы минимума потенциальной энергии и дополнительной работы излагаются в большинстве перечисленных курсов теории упругости. Им и их разнообразным приложениям посвящена также книга  [c.913]

В литературе функционал (8) часто называют функционалом Лагранжа вариационной задачи (1), (2). Мы не будем пользоваться этим термином, оставив его для функционала, участвующего в формулировке принципа Лагранжа (принцип минимума потенциальной энергии) в теории упругости и теории оболочек. Функционал (8), как и все функционалы без дополнительных условий, полный.  [c.36]

В качестве исходных пунктов для применения теории преобразования вариационных проблем использованы принцип минимума потенциальной энергии  [c.110]

В настоящей главе обсуждаются вариационные принципы теории упругости при малых перемещениях. В этом параграфе принцип минимума потенциальной энергии будет выведен из принципа виртуальной работы, установленного в 1.4.  [c.49]

Отсюда и из принципа минимума потенциальной энергии ( 2.1), кстати, следует, что не существует неустойчивых положений равновесия, если изучается задача линейной теории упругости.  [c.97]

Использование соотношений (9.90) для практических целей можно считать оправданным, если вспомнить предположения, на которых основана рассматриваемая теория тонких оболочек. Однако соотношения (9.88) используются для теоретических построений, поскольку этот выбор согласуется с результатами, полученными из принципа виртуальной работы или принципа минимума потенциальной энергии.  [c.276]

Заканчивая эту главу, сделаем два замечания. Первое замечание касается метода Галеркина. Как указано во введении к части А, приближенный метод решения, основанный на принципе виртуальной работы и называемый методом Галеркина, может рассматриваться как вариант метода взвешенных невязок. В задачах линейной статической теории упругости этот метод приводит к конечно-элементной формулировке, эквивалентной формулировке, получаемой при помощи принципа минимума потенциальной энергии. Однако в задачах, более сложных, чем задачи линейной теории упругости, предпочтительнее использовать принцип виртуальной работы или его эквивалент. Можно провести аналогичные рассуждения, связанные с методами конечных элементов, основанными на принципе дополнительной виртуальной работы, модифицированном принципе виртуальной работы и модифицированном принципе дополнительной виртуальной работы.  [c.358]

Уравнения (17.97) содержат минимальное число членов, необходимое для описания влияния поперечной деформации сдвига, поперечной нормальной деформации и искажения поперечного сечения. Для вывода уравнений равновесия используется принцип минимума потенциальной энергии. Для примера с помощью этих уравнений была решена задача и решение было сопоставлено с точным решением по трехмерной теории. Ло и др. [38] обобщили эту теорию и на случай толстых слоистых пластин.  [c.422]


В теории упругости- большое значение имеют энергетические методы, основанные на использовании принципа минимума потенциальной энергии и принципа Кастильяно. В настоящем параграфе устанавливаются аналогичные теоремы в теории упруго-пластических деформаций.  [c.64]

Этот принцип является в известной степени аналогом принципа минимума потенциальной энергии деформаций, широко используемого в теории упругости. Принцип Гельмгольца в гидродинамике вязкой жидкости, так же как принцип минимума потенциальной энергии в теории упругости, может быть положен в основу применения прямых методов вариационного исчисления для решения задач о медленном движении, в частности для задач гидродинамической теории смазки.  [c.430]

Отметим, что в теории упругости, например, подобному способу преобразования функционала по области к функционалу по границе (или ее части) соответствует применение теоремы Клапейрона для преобразования функционалов, отвечающих принципу минимума потенциальной энергии и принципу минимума дополнительной работы [11].  [c.205]

Минимальные принципы в теории упругопластических деформаций аналогичны принципу минимума потенциальной энергии и принципу Кастильяно в теории упругости [6, 69, 77, 101, 132, 200].  [c.124]

Так как по закону Гука напряжения можно выразить через деформации (а следовательно, через перемещения и, V, а/) и, обратно, деформации можно выразить через напряжения, то в теории упругости одну и ту же задачу можно решать либо в перемещениях, либо в напряжениях, рассматривая соответствующую систему дифференциальных уравнений. Этим двум подходам отвечают и различные вариационные принципы (принцип минимума потенциальной энергии и принцип Кастильяно). Заметим, что можно исходить из смешанной системы уравнений, но это не всегда удобно.  [c.26]

Заканчивая обзор основных положений линейной статики стержней, обратимся к вариационным принципам. Лежащий в основе нелинейной теории принцип виртуальной работы остается справедливым и в линейном приближении. Он переходит в принцип минимума потенциальной энергии системы  [c.154]

Нетрудно убедиться и в справедливости принципа минимума потенциальной энергии, а также построить вариационные формулировки о дополнительной работе и смешанные. Однако это относится лишь к теории с G О, где силовые условия ставятся непосредственно по Коши (без преобразования контурного интеграла),  [c.225]

Уместно отметить, в чем, по мнению автора, заключается главная особенность книги. В момент ее написания во всех приложениях и в теории метода конечных элементов имели дело с конечно-элементными формулировками, основанными на перемещениях (т. е. на жесткости или на принципе минимума потенциальной энергии). Альтернативные формулировки, основанные на полях напряжений и даже на совокупности полей перемещений и полей напряжений, однако, весьма перспективны, поэтому автор предвидит возможность, что в конце концов эти формулировки также займут равное положение при решении прикладных задач. В связи с этим в гл. 5—7 указанным альтернативным формулировкам уделяется значительное внимание.  [c.8]

Рассмотрим теперь теорию упругости при малых деформациях и принцип минимума потенциальной энергии, изложенный в примере (2) разд. 2.6. Этот принцип предполагает, что имеют место определенные соотношения между напряжением и деформацией и между деформациями и перемещениями, а также выполнены кинематические граничные условия.  [c.41]

В теории упругости рассматриваются преимущественно два вариационных принципа — принцип минимума потенциальной энергии и принцип минимума дополнительной работы (принцип Кастильяно).  [c.97]

Если пренебрегать слагаемыми, содержащими и ъ формулах для Xj, Иа, X, то (чтобы быть последовательными) следует внести в уравнения теории оболочек еще ряд упрощений. Это можно обнаружить, подставив формулы (1.163) в выражение для потенциальной энергии оболочки (1.112) и выведя затем из него (воспользовавшись принципом минимума полной энергии) уравнения равновесия элемента срединной поверхности в смещениях. Если выполнить указанные действия, записать полученные уравнения в терминах усилий и моментов, а затем сравнить их  [c.68]

При исследовании и решении задач теории упругости широко применяются энергетические (вариационные) методы. В их основе лежит использование тех или иных энергетических теорем (вариационных принципов, а в задачах с краевыми условиями в форме альтернативных равенств и неравенств и вариационных неравенств). Подробное изложение энергетических теорем с анализом класса задач, для которых та или иная из них наиболее эффективна, содержится, например в [19, 90,93, 123, 134, 135, 138, 225]. В дальнейшем понадобится главным образом теорема о минимуме потенциальной энергии, а также теорема о минимуме дополнительной работы. Приведем необходимые определения и формулировки.  [c.94]

При решении конкретных технических задач в большинстве случаев не удается получить точного решения, поэтому приходится использовать различные приближенные методы анализа. В теории оболочек наибольшее распространение получили вариационные методы, основанные на принципе минимума энергии деформации. Если анизотропная пластинка изгибается нормальной нагрузкой р, то потенциальная энергия изгиба определится известным выражением  [c.51]

Как было показано, формулы для матриц элементов в линейных задачах теории упругости совпадают, если их получать на основе принципов соответственно виртуальной работы и минимума потенциальной энергии. Принцип виртуальной работы является более фундаментальным и его обобщения позволяют построить конечноэлементные представления не только для задач расчета конструкций. Поэтому многие предпочитают использовать именно этот принцип. С другой стороны, выражения для энергии деформации либо хорошо известны, либо легко выписываются во многих задачах расчета конструкций. Кроме того, энергетический подход делает наглядными экстремальные свойства решения и позволяет построить, как мы увидим в гл. 7, альтернативные алгоритмы, основанные на этих свойствах.  [c.172]


Для краевой задачи связанной теории термоупругости в [115] предложены вариационные формулировки, соответствующие принципам минимума потенциальной энергии системы, Кастильяно, Хеллингера-Рейсснера и Ху-Вашицу, причем в функционалы с помощью свертки явно включены начальные условия. Наиболее удобно для решения краевых задач использовать принцип минимума потенциальной энергии системы или принцип Лагранжа для полей перемещений и температуры, который состоит в следующем [21].  [c.193]

Метод Ритца. Вариационная формулировка задачи о равновесии, заключающаяся в принципе минимума потенциальной энергии системы, подсказывает возможность применения для решения задач теории упругости прямых методов вариационного исчисления.  [c.153]

Вариационные методы наиболее плодотворно применяются в теории малых деформаций упругого тела. В случае когда существует функция энергии деформации и при вариациях перемещений внешние силы остаются неизменными, принцип виртуальной работы приводит к установлению принципа минимума потенциальной энергии. Этот вариационный принцип с помощью введения множителей Лагранжа дает семейство вариационных принципов, включающее принцип Хеллингера — Рейсснера, принцип минимума дополнительной энергии и т. д.  [c.18]

С Другой стороны, принцип дополнительной виртуальной работы приводит к установлению принципа минимума дополнительной энергии в случае, когда соотношения напряжения — деформации таковы, что существует функция дополнительной энергии и предполагается, что при вариации напряжений граничные условия в перемещениях остаются неизменными. Принцип минимума дополнительной энергии с помощью введения множителей Лагранжа приводит к принципу Хеллингера — Рейсснера, принципу минимума потенциальной энергии и т. д. Показано, что в рамках теории малых деформаций упругого тела эти два подхода к формулированию вариационных принципов являются взаимными и эквивалентными друг другу.  [c.19]

Принцип минимума дополнительной энергии был выведен в 2.2 из принципа Дополнительной виртуальной работы. Легко проверить, что принцип минимума потенциальной энергии можно вывести из принципа минимума дополнительной энергии, проводя в обратном порядке рассуждения этого и предыдущего параграфов. Эквивалентноегь этих двух подходов очевидна, так как речь идет о теории упругости при малых перемещениях. Однако особо отметим тот путь, который ведет от принципа виртуальной работы к принципу минимума потенциальной энергии и другим связанным с ним вариационным принципам, потому что этот метод имеет больше преимуществ при систематическом решении задач в механике твердого тела.  [c.59]

Если краевую задачу теории упругости можно решить только приближенно, желательно найти верхнюю и нижнюю границы точного решения. Но это требование редко удовлетворяется, так как обычно найти границы гораздо сложнее, чем приближенные решения. Треффтц предложил способ нахождения формул для верхней и нижней границ для крутильной жесткости стержня путем одновременного использования принципов минимума потенциальной энергии и дополнительной энергии (см. [18] и 6.5). После того как его работа была опубликована, появилось множество работ по этому и близким вопросам теории упругости. Среди них можно отметить введение важного понятия функционального пространства, предложенное Прагером и Синджем [19].  [c.62]

Первой темой будет теория пластин типа Тимошенко—Минд-лина, в которой распределение перемещений по толщине принимается в виде (17.78). Теория пластин Тимошенко—Миндлина представляет интерес потому, что в этой теории в отличие от теории Кирхгофа для формулировки конечно-элементных моделей, основанных на принципах минимума потенциальной энергии, достаточно только непрерывности (С -гладкости) базисных функций (см. уравнение (17.83)).  [c.416]

Символический метод Лурье в приложении к теории плит был затем использован Е. М. Кругом (1955), И. Г. Терегуловым (1961), Т. Т. Хачатуряном (1963), У. К. Нигулом (1963) в монографии В. А. Агарева (1963) расширяется область приложения символического метода к теории плит дальнейшее приложение символического метода к теории плит в сочетании с принципом минимума потенциальной энергии дано В. К. Прокоповым  [c.18]

Идея использовать в качестве пробных функций приближенные рещения, удовлетворяющие необходимым ограничениям, реализована во многих работах. В первую очередь, это работа [41], Обосновав специальный вариационный принцип, ее авторы во многих случаях получили для эффективных параметров границы более узкие, чем (6.268). Позднее Р. Хиллом [37] было доказано, что вариационный принцип Хашина-Штрикмана для задач теории упругости эквивалентен принципам минимума потенциальной и дополнительной энергии. Эквивалентность следует понимать как взаимную выводимость принципов. Для задач переноса принцип Хащина-Штрикмана [41] эквивалентен принципу минимума диссипации энергии. Точное решение соответствующих задач одновременно минимизирует как функционал Хашина-Штрикмана, 1гак и энергетический функционал.  [c.166]

Идея представления конструкций в виде набора дискретных элементов восходит к раннему периоду исследования конструкций летательных аппаратов, когда, например, крылья и фюзеляжи рассматривались как совокупности стрингеров, обшивки и работающих на сдвиг панелей. Хренников [1941] ввел метод каркасов — предшественник общих дискретных методов строительной механики — и применил его, представляя плоское упругое тело в виде набора брусьев и балок. Топологические свойства некоторых типов дискретных систем изучались Кроном [1939] ), который разработал универсальные методы анализа сложных электрических цепей и строительных конструкций. Курант [1943] дал приближенное решение задачи кручения Сен-Венана, используя кусочнолинейное представление функции искажения в каждом из треугольных элементов, совокупностью которых заменялось поперечное сечение тела, и формулируя задачу с помощью принципа минимума потенциальной энергии. Пример применения Курантом метода Ритца содержит в себе все основные моменты процедуры, известной теперь как метод конечных элементов. Аналогичные идеи использовал позже Пойа [1952]. Метод гиперокружностей , предложенный в 1947 г. Прагером и Сингом [1947] и подробно исследованный Сингом [1957] ), легко может быть приспособлен для конечноэлементных применений он проливает новый свет на приближенные методы решения некоторых краевых задач математической физики. В 1954 г. Аргирис и его сотрудники ) начали публикацию серии работ, в которых они далеко развили некоторые обобщения линейной теории конструкций и представили методы  [c.12]

Можно доказать и более общую теорему [28J, которую часто называют принципом минимума полной потенциальной энергии в положении равновесия полная потёнцильная энергия консервативной системы имеет стационарное значение, причем положение равновесия устойчиво, когда это стационарное значение-минимум.  [c.24]



Смотреть страницы где упоминается термин Теория Принцип минимума потенциальной : [c.155]    [c.311]    [c.109]    [c.166]    [c.78]    [c.211]    [c.26]   
Прочность, устойчивость, колебания Том 1 (1966) -- [ c.0 ]



ПОИСК



Минимум

Потенциальная теория

Принцип минимума



© 2025 Mash-xxl.info Реклама на сайте