Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Металлы Ползучесть упрочнения

Сложность процесса пластического формоизменения материалов обусловлена, как мы уже упоминали, сложностью сопутствующих этому процессу физических явлений (упрочнение, возврат и рекристаллизация металлов, ползучесть, релаксация, разрушение и пр.), а также сложностью механизма осуществления данного процесса в целом. Такие факторы, как сложная форма тела, наличие неравномерного предварительного упрочнения исходного металла, переменность температурно-скоростного режима пластического формоизменения, немонотонность протекания процесса и пр. накладывают отпечаток на характер деформирования, создавая, как следствие, неравномерность напряженного поля и сложный вид напряженно-деформированного состояния по всему объему тела.  [c.21]


Подобно тому как теория течения металлов, обладающих упрочнением (п. 3 настоящей главы), основывалась на введении функции пластического упрочнения Хо = /(7д), которую, в свою очередь, можно рассматривать как математическое обобщение линейной зависимости между напряжениями и деформациями — для (несжимаемого) упругого материала, точно так же и теория установившейся ползучести твердых тел может основываться на  [c.472]

Для суждения о сопротивлении металла ползучести вводится понятие предел ползучести, под которым понимают то напряжение, которое вызывает за данный промежуток времени определенную скорость деформации или деформацию заданной величины. Таким образом, сопротивление ползучести характеризует сопротивление пластической деформации при высоких температурах. Роль высокой те.мпературы, если она превышает температуру рекристаллизации, сводится к снятию упрочнения, вызван-кого пластической деформацией.  [c.330]

Очевидно, в тех случаях, когда покрытие не является адсорбционно-активным по отношению к данному твердому металлу, эффект упрочнения является единственным возможным эффектом, и его наблюдение не представляет особых трудностей. Действительно, этот эффект отчетливо проявляется, например, при растяжении с постоянной нагрузкой амальгамированных монокристаллов кадмия (рис. 117), причем ртуть оказывает тем большее упрочняющее действие, чем меньше скорость ползучести [127].  [c.228]

Если при данной температуре (может быть, и лежащей выше температуры рекристаллизации) значение напряжения ниже предела упругости металла при данной температуре, то очевидно, что напряжение вызовет только упругие деформации. Если нет пластической деформации, то нет упрочнения, разупрочнения и ползучести.  [c.455]

Ползучесть обусловливается двумя процессами, протекающими при высокотемпературном длительном нагружении металла и действующими противоположно. Так, в процессе пластической деформации при высоких температурах происходит упрочнение (наклеп) металла, что повышает его сопротивление деформации. Одновременно при температуре нагрева металла, превышающей температуру его рекристаллизации, происходит разупрочнение металла вследствие рекристаллизации, что облегчает деформацию.  [c.199]

Уравнение (18.4.1) иногда называют уравнением состояния при ползучести, но этот термин в теориях, использующих термодинамику, имеет несколько иной смысл. Существенно подчеркнуть, что параметром упрочнения является именно деформация ползучести р в ранних работах эта оговорка часто не делалась и за параметр упрочнения принималась полная деформация (иногда за вычетом упругой части). Опыты показывают, что мгновенная пластическая деформация, если она невелика—порядка 1—2%,— не оказывает упрочняющего влияния на последующую ползучесть. Это можно объяснить некоторой разницей механизма мгновенной пластической деформации и пластической деформации, происходящей в процессе ползучести. В первом случае, если пластическая деформация невелика, она происходит в результате локализованного скольжения по пачкам плотно расположенных плоскостей скольжения в кристаллических зернах, при этом большая часть объема металла остается недеформированной, а следовательно, неупрочненной. Ползучесть происходит в результате скольжения по атомным плоскостям, распределенным по объему равномерно и на близких расстояниях величина сдвига в каждой плоскости невелика, но достаточна для создания равномерного упрочнения.  [c.621]


Необходимо сразу же отметить, что существует оптимальная степень предварительной деформации, превышение которой может привести к ухудшению сопротивляемости ползучести. Положительный эффект предварительной деформации на сопротивляемость ползучести объясняется развитием субструктуры в процессе последующей службы металла при повыщенных температурах. Однако получаемая при этом субструктура нестабильна, и при температурах испытания (службы) выще температуры рекристаллизации эффект упрочнения исчезает.  [c.29]

Наиболее эффективное повышение сопротивляемости ползучести никеля наблюдается после обработки при температурах 4,2° К. В данном случае скорость ползучести в 4—4,5 раза ниже, чем у металла в отожженном состоянии. Но еще больший эффект упрочнения получен на меди после низкотемпературного деформирования при 4,2° К и последующего отжига в течение 100 час. при комнатной температуре. В данном случае скорость ползучести меди после МТО снизилась по сравнению со скоростью ползучести этого металла в отожженном состоянии почти в 88 раз, а срок службы возрос приблизительно в 5 раз.  [c.33]

При испытаниях в условиях ползучести в таком металле протекают интенсивные процессы миграции границ зерен и образования зародышей рекристаллизации. Интенсивно идет выделение вторичных фаз, в том числе <т-фазы. Упрочненная стабилизированной субструктурой матрица зерен и разупрочняющие процессы в приграничных зонах (миграция границ, образование и рост вторичных фаз) вызывают повышение жаропрочности при высоких нагрузках и малых долговечностях и существенное снижение жаропрочности при низких нагрузках и больших долговечностях.  [c.33]

Основными требованиями к режимам восстановительной термообработки являются полное залечивание накопившихся при ползучести несплошностей обеспечение эффекта субструктурного упрочнения восстановление длительной прочности металла до уровня не ниже исходного состояния получение удовлетворительного комплекса структуры и кратковременных механических свойств, отвечающих требованиям ТУ.  [c.255]

В книге приведены общие соотношения для расчета гармонических составляющих э.д.с. накладного датчика в зависимости от коэрцитивной силы, остаточной и максимальной индукции ферромагнитных материалов при одновременном воздействии Переменных и постоянных полей. Даны рекомендации по выбору оптимальных значений намагничивающих полей и конструктивных элементов датчиков. Рассмотрены основные типы феррозондов с поперечным и продольным возбуждением. На основании общих соотношений теории дислокаций описаны процессы упрочнения, ползучести, изменения магнитных и механических свойств металлов при деформации и усталости нагружения. Даны рекомендации по применению методов и приборов по контролю качества термообработки и упругих напряжений, однородности структуры.  [c.2]

Во второй части представлены результаты изучения физических свойств, кристаллической и дислокационной структуры металлов при деформации и термической обработке. На основе общих положений теории дислокаций описаны процессы упрочнения и ползучести, изменения магнитных, электрических и механических свойств при статическом и циклическом нагружении. Показано, что характером тонкой кристаллической структуры определяются свойства магнитомягких материалов и макроскопическая неоднородность.  [c.4]

Хотя в условиях горячей деформации процессы деформационного упрочнения и динамического разупрочнения проходят в сравнительно короткие промежутки времени, горячая деформация по реологическим признакам сходна с процессами ползучести металлов, поэтому хорошо описывается феноменологической теорией ползучести.  [c.29]

В настояш,ее время известны способы сохранения высокотемпературной прочности и сопротивления ползучести. К таким способам относятся дисперсное упрочнение металлической матрицы тугоплавкими кислородными и бескислородными дисперсными частицами [52]. Сравнительно недавно созданы вольфрамовые сплавы W—Hf—С и W—Hf—Re—С для получения волокон (проволоки) для армирования никелевых матриц [95]. Упрочняющей фазой в волокнах из вольфрамового сплава является карбид гафния. Подобное упрочнение дисперсными частицами может быть осуществлено и на других металлах.  [c.42]


При анализе критериев и границ существования приспособляемости наряду с использованием простейшей диаграммы деформирования идеально пластичного тела привлекаются механические дискретные и статистические структурные модели тел В дискретных моделях [37] рассматривается система одновременно деформирующихся на одинаковую величину подэлементов, наделенных различными упругопластическими и реологическими свойствами. Это позволяет описать влияние скорости деформирования на диаграмму растяжения металла, эффект Баушингера и циклическое упрочнение при малоцикловом нагружении, ползучесть и релаксацию при выдержках, а также воспроизвести деформационные процессы при сложном, в том числе неизотермическом нагружении. Тем самым использование моделей способствует введению надлежащих уравнений состояния в вычислительные решения задач о полях упругопластических деформаций при термоциклическом нагружении. На этой основе рассматривались вопросы неизотермического деформирования лопаток и дисков газовых турбин, образцов при термоусталостных испытаниях и, ряд других приложений.  [c.30]

В металле, претерпевающем пластическую деформацию в области упрочнения, в условиях определенного температурного режима происходят два противоположных процесса — упрочнение (наклеп) и разупрочнение (отдых и рекристаллизация). При этом при низких температурах превалирует первый, а при высоких — второй. Оба эти процесса весьма существенно влияют на протекание ползучести.  [c.284]

Даже после рассмотренных систематических исследований многие вопросы остаются открытыми. Воздушная среда имеет тенденцию усиливать скольжение по границам зерен, но природа реакций с газовой фазой на этих границах и механизм усиления скольжения неизвестны. Точно так же механизм упрочняющего влияния поверхностной оксидной пленки и ее профиль по глубине еще требуют модельного описания в терминах толщин оксида я металла, компактности и адгезии оксида. Кроме того, если полагать, что само физическое присутствие окалины может вызывать упрочнение поверхностных зерен, то следует изучить состояние напряжения дальнего порядка, вызванного в подложке ростом пленки оксида или индуцированного термически, а также исследовать влияние этих напряжений на ползучесть и разрушение (см. табл. 5). Если рассматривать идеальный случай, когда напряжение сдвига на границе сплав/оксид передается сплаву как нормальное сжимающее или растягивающее напряжение, то элементарная механика предсказывает обратную зависимость скорости ползучести от диаметра образца. Этот эффект напряжения оксида также может либо складываться, либо конкурировать с другими поверхностными эффектами.  [c.40]

Согласно теории наклепа и рекристаллизации начальная стадия процесса ползучести обусловлена тем, что еще не все зерна металла включились в процесс упрочнения и разупрочнения. По мере распространения процесса на большее количество зерен скорость ползучести затухает. Упрочнение преобладает над разупрочнением.  [c.69]

Компьютерный эксперимент, результаты которого приведены на рис. 4.17, показал интересные результаты интенсивность деформационного упрочнения dK/de при ползучести (е <5-10 ) практически идентична его интенсивности при высокоскоростной деформации (б >10 с ), а зона скоростей большого каньона 5-10 <е <10 с характерна именно для большинства традиционных механических испытаний и технологических процессов обработки металлов.  [c.198]

В течение 1970-х и начале 80-х гг. значительные усилия направляли на повышение проектной прочности турбинных дисков вначале с этой целью повышали сопротивление ползучести (длительную прочность), а позднее — усталостную прочность. Новые способы обработки, например, газовое распыление и обработка высоким изостатическим давлением, позволяли разработать сплавы с более высоким содержанием 2г -фазы. Дополнительным толчком к росту прочности послужило внедрение методов тепловой деформационной обработки, в результате которой металл в значительной степени сохраняет сообщенное ему деформационное упрочнение или побуждается к рекристаллизации с образованием чрезвычайно мелкозернистой структуры. При такой обработке предел текучести при комнатной температуре после старения значительно превышает 1370 МПа.  [c.318]

Анализ рассмотренных результатов позволяет заключить, что основные различия в скорости ползучести относятся к третьей стадии процесса, тогда как на первых двух стадиях скорость практически не зависит от среды. Обычно подобное поведение сплавов при ползучести принято объяснять, исходя из предположения о существовании в этих условиях двух конкурирующих механизмов. Один из них — упрочнение металла благодаря окислению, второй — разупрочнение вследствие уменьшения поверхностной энергии металла при испытании на воздухе по сравнению с таковой для вакуума. Снижение поверхностной энергии при окислении свежей поверхности трещины способствует более интенсивному ее распространению и ускорению ползучести. При условиях, соответствующих упрочнению материала при испытании на воздухе, преобладает насыщение объема образца кислородом, в то время как при отсутствии интенсивного окисления доминирует конкурирующий процесс разупрочнения. Относительная скорость обоих процессов может быть изменена соответствующим варьированием скорости деформации, температуры, давления газовой среды. Процесс упрочнения становится особенно эффективным после образования трещин на третьей стадии ползучести это подтверждает газовый анализ образцов, показывающий, что именно в этот период наблюдается наибольшее поглощение кислорода и азота сплавом [396].  [c.439]

По результатам испытаний величина аю- сварного соединения непрерывно возрастает с повышением прочности основного металла. В данном случае влияние ползучести прослойки полностью еще не проявляется, а определяющим является эффект от контактного упрочнения за счет большей прочности окружающего мягкую прослойку основного металла.  [c.185]


Диаграмма ползучести состоит из трех участков, адекватных трем стадиям ползучести. На участке I ползучесть протекает с постепенно уменьшающейся скоростью (кривая постепенно становится пологой). Здесь металл больше упрочняется от наклепа вследствие растяжения, чем разупрочняется от действия высокой температуры. На участке II (прямая линия) ползучесть происходит с постоянной скоростью — разупрочнение уравновешивается упрочнением. На участке III (кривая круто поднимается вверх) разупрочнение начинает преобладать над упрочнением, ползучесть происходит со все более увеличивающейся скоростью, что приводит к разрушению металла. При высокой температуре детали машин должны работать в условиях, соответствующих участку II. Длитель- Рис. 2.6. Диаграмма ползучести  [c.22]

Пластическая деформация (наклеп) вызывает упрочнение металла. При высокой температуре, когда подвижность атомов достаточно велика, происходит снятие упрочнения (наклепа), вызванного пластичеокон деформацией. Таким образом, в процессе ползучести происходят два конкурирующих процесса упрочнение металла пластической деформацией и снятие упрочнения под воздействием повышенной температуры.  [c.454]

Рассматривая ползучесть как некоторый вид квазивязкого течения металла, мы должны допустить, что в каждый момент скорость ползучести при данном структурном состоянии определяется однозначно действующим напряжением и температурой. Структурное состояние — это термин, чуждый по существу механике, поэтому применение его в данном контексте должно быть пояснено более детально. Понятие о структурном состоянии связано с теми или иньгаи физическими методами фиксации этого состояния — металлографическими наблюдениями, рентгеноструктурным анализом, измерением электрической проводимости и т. д. Обычно физические методы дают лишь качественную характеристику структуры, выражающуюся, например, в словесном описании картины, наблюдаемой на микрофотографии шлифа. Иногда эта характеристика может быть выражена числом, но это число бывает затруднительно ввести в механические определяющие уравнения. В современной физической литературе, относящейся к описанию процессов пластической деформации и особенно ползучести, в качестве структурного параметра, характеризующего, например, степень упрочнения материала, принимается плотность дислокаций. Понятие плотности дислокаций нуждается в некотором пояснении. Линейная дислокация характеризуется совокупностью двух векторов — направленного вдоль оси дислокации и вектора Бюргерса. Можно заменить приближенно распределение большого числа близко расположенных дискретных дислокаций их непрерывным распределением и определить, таким образом, плотность дислокаций, которая представляет собою тензор. Экспериментальных методов для измерения тензора плотности дислокаций не существует. Однако некоторую относительную оценку можно получить, например, путем подсчета так называемых ямок травления. Когда линия дислокации выходит на поверхность, в окрестности точек выхода имеется концентрация напряжений. При травлении реактивами поверхности кристалла окрестность точки выхода дислокаций растравливается более интенсивно, около этой точки образуется ямка. Таким образом, определяется некоторая скалярная мера плотности дислокаций, которая вводится в определяюпще уравнения как структурный параметр. Условность такого приема очевидна.  [c.619]

В зависимости от соотношения влияния этих процессов в данных условиях испытания возможно как упрочнение, так и разупрочнение предварительно деформированного металла. При повышении температуры и продолжительности испытания роль и значение процессов разупрочнения возрастает по сравнению со значением деформационного упрочнения, что в случае наклепа приводит к понижению характеристик усталости и жаропрочности сталей и сплавов по сравнению с ненаклепанным состоянием. На характер зависимостей длительной прочности, ползучести и сопротивления усталости от предварительного наклепа влияет субструктура, возникающая в зернах в результате предварительной деформации металла и отжига.  [c.200]

Хотя уравнение (1) удовлетворительно описывает поведение широкого круга металлов и сплавов в режиме установившейся ползучести, сравнительно недавно было найдено [13], что в высокостойких к ползучести (крипоустойчивых) упрочненных выделениями сплавах (суперсплавы и дисперсноупрочненные сплавы) необходимо учитывать также наличие внутренних напряжений Сть препятствующих образованию и движению дислокаций  [c.11]

В процессе ползучести число следов скольжения, выходящих на поверхность полированного образца, испытываемого в вакууме, сначала увеличивается, а затем остается постоянным. Время, в течение которого происходит увеличение числа следов скольжения, соответствует первой стадии процесса ползучести, когда деформация протекает с убывающей скоростью. На стадии установившейся толзучести число полос скольжения остается неизменным [Л. 60]. Образование следов скольжения и упрочнение обусловлены одним и тем же процессом перемещения дислокаций и взаимодействия их между собой и с препятствиями. В окрестности пачки плоскостей скольжения металл упрочняется, и образование новых плоскостей скольжения затруднено. Более высокому уровню напряжений соответствует более высокая плотность следов скольжения на стадии установившейся ползучести.  [c.71]

Особенности механич. свойств С. обусловлены различием упругих свойств образуювдих их фаз (изменение Электронной структуры, образование нехарактерных для металлов кристаллич. решёток и т. д.), а также протеканием фазовых превращений под действием мехавйч. напряжений и др. В С. наблюдаются эффекты упрочнения в результате закрепления дислокаций на примесных атомах и торможения их движения, выделения частиц 2-й фазы и т. д, В условиях деформации под действием пост, нагрузки (ползучесть) при движении дислокаций со скоростью, превышающей скорость диффузии примесных атомов, имеет место отрыв дислокаций от атмосферы примесей (атмосферы Котрелла), при замедлении дислокаций они вновь захватываются атмосферой примесей (деформац. старение), что приводит к изменению пластичности и прочности. В эвтектоидных С. при определённых температурно-скоростных условиях деформации наблюдается явление с в е р х п л а-  [c.651]

Для расчета напряжений и деформаций деталей (во времени) при бегают к теории ползучести. При этом предполагают, что для данны> металлов известны некоторые константы и другие опытные данные Естественно, что наиболее приемлемой является такая теория, которая меньше искажает опытные данные и основывается непосредственно на опытных кривых. При этом очень важно, чтобы пользование этой теорией не приводило к таким математическим трудностям, которые не позволят использовать эту теорию в практике инженерных расчетов деталей паровых турбин. Главные из теорий ползучести — теория течения, тео-рия старения, теория упрочнения и теория пластической наследственности. Имеются различные варианты, и формулировки этих теорий. Ряд теоретических работ и экспериментов показал, что наиболее проверенной (кроме того и доступной для инженерной практики), является теория старения. Первоначально она была сформулирована Зодербергом, далее развита академиком Ю. Н. Работ-новым [104]. Теория не универсальна,  [c.17]


Большинство ниобиевых сплавов (табл. 19.5) отличается хорошей деформируемостью, свариваемостью и неплохой прочностью. На сегодняшний день упрочняющее легирование ниобия осуществляется простым упрочнением твердого раствора тугоплавкими элементами с высокими модулями упругости и дисперсного упрочнения карбидами типа МеС. Для образования твердых растворов замещейия, отличающихся повышенным сопротивлением ползучести, чаще всего вводят вольфрам, молибден и тантал. Элементы с высокой реакционной способностью, цирконий и гафний, взаимодействуя с углеродом и азотом, образуют очень мелкие выделения, еще более повышающие сопро1ивление ползучести. Алюминий и титан повышают стойкость основного металла против окисления однако они понижают температуру плавления и поэтому отрицательно сказываются на прочности. Сплавы выплавляют электроннолучевым способом или в вакуумной печи с двумя расходуемыми электродами и с последующей обработкой давлением. Литейные ниобиевые сплавы не известны.  [c.310]

Однако марганцевый аустенит характеризуется хладноломкостью (КСи 0,3 МДж/м ) при низких температурах (ниже -100 °С), в то время как никелевый аустенит вплоть до -196 °С сохраняет достаточно высокую ударную вязкость (КСи 3 МДж/м ). Такое различие свойств никелевого и марганцевого аустенитов обусловлено существенно меньщими значениями энергии дефектов упаковки в марганцевом аустените (ориентировочно 0,075—0,06 Дж/м в интервале от 0 до -196 °С) по сравнению с никелевым ( 0,15 Дж/м ). Таким образом, можно регулировать способность аустенита к упрочнению при пластической деформации, изменяя энергию дефектов упаковки в нем посредством рационального легирования никелем и марганцем аустенитных сталей и сплавов. В сплавах с ГЦК решеткой (в том числе и в аустенитных сталях) энергия дефектов упаковки оказывает более существенное влияние на упрочнение, чем рассмотренные раньше виды взаимодействия дислокаций с легирующими элементами. Так, легирующие элементы в стали, снижающие энергию дефекта упаковки, повышают температуру начала рекристаллизации и сужают интервал кристаллизации. Скорость установившейся ползучести ГЦК металлов уменьшается с уменьшением энергии дефектов упаковки. Дефекты упаковки являются центрами выделения когерентных фаз (карбидов, интерметаллидов и др.) в аустенитных сталях и сплавах с ГЦК решеткой. Так, в закаленных аустенитных сталях с 1% ниобия (12Х18Н10Б) или с 1% титана (12Х18Н10Т) при высокотемпературной (-700 °С) выдержке на дефектах упаковки выделяются когерентно связанные с матрицей кубические карбиды МЬС и Т1С. Мелкодисперсные карбидные частицы (размером до 10 нм) препятствуют движению дислокаций, а также способствуют их размножению, что в конечном итоге приводит к повышению прочности стали (рис. 7.3). В то же время коагуляция кубических карбидов (Т1С, ЦЬС), выделяющихся на дефектах упаковки, протекает более медленно, чем карбидов (в том числе и  [c.149]

Легирование Сг повышает жаростойкость сталей при температуре выше 450 °С, а совместно с Мо повышает длительную прочность и сопротивление ползучести, за счет образований упрочняющей металл фазы Лавеса РегМо. Ванадий совместно с углеродом обеспечивает упрочнение стали высокодисперсными карбидами (табл. 7.8).  [c.318]

Термическое старение при температурах 350. .. 500 °С может привести к появлению 475°-ной хрупкости. Выдержка аустенитно-феррит-ных швов при температуре 500. .. 650 °С приводит к старению в основном за счет выпадения карбидов. Одновременно идет процесс образования ст-фазы. Легирование сталей титаном и ниобием приводит к дисперсионному упрочнению стали за счет образования их прочных карбидов. Являясь ферритизаторами, титан и ниобий, способствуя образованию в шве ферритной составляющей, увеличивают количество ст-фазы в металле. Выдержки при температуре 700. .. 850 °С значительно интенсифицируют образование а-фазы с соответствующим охрупчиванием металла при более низких температурах и снижением предела ползучести при высоких температурах. При этих температурах возрастает роль и интер-металлидного упрочнения за счет образования, в частности, интерметал-лидных фаз железа с титаном и ниобием.  [c.355]

Изложенный механизм предполагает зависимость эффектов упрочнения и разупрочнения при ползучести металла от его сопротивления окислению. В связи с этим интересны результаты сравнительного изучения ползучести никеля и хромоникелевого сплава на воздухе и в вакууме, описанные в работе [403]. Сплав имел следующий состав 19,2% Сг 1,5% Fe 1,4% Si 0,47% Mn 0,1% Al 0,04% С остальное — никель. Он подвергался испытанию в интервале температур 593—1038° С и напряжений 10—420 Мн1м (1,05—42,2 кГ1мм ). Максимальное разрежение (при 593°С) составило 0,67 мн/м (5-10 мм рт. ст.), минимальное (при 1038°С) 13,3 мн/м (10 мм рт. ст.). Влияние среды на характеристики ползучести хромоникелевого сплава аналогично влиянию, установленному для чистого никеля. Однако из-за большей жаростойкости хромоникелевого сплава влияние температуры при прочих равных условиях оказалось для него более слабым, чем для никеля. Таким образом, полученные экспериментальные факты можно рассматривать как свидетель-  [c.439]

Развитие второй группы процессов, приводящих к упрочнению тела зерна околошовной зоны, имеет место главным образом па ветви охлаждения при сварке в интервале температур, когда пластическая деформация реализуется уже за счет скольжения в пределах зерна и интенсивного его наклепа. Резкому повышению прочности тела зерна способствует выпадение в процессе охлаждения после сварки, термической обработки и высокотемпературной эксплуатации дисперсных карбидов и нитридов Т1, N6, V и других энергичных карбидообразующих элементов, блокирующих плоскости скольжения. Оно проявляется в заметном повышении твердости металла. В связи с резким упрочнением тела зерна увеличивается доля квазивязкого течения по границам зерен во время протекания процесса ползучести в околошовной зоне, что способствует развитию локальных разрушений.  [c.78]

Данный жаропрочный аустенитный сплав может быть использован во всех трех группах сварных конструкций. Если речь идет о ракетном двигателе, то здесь от сварщика требуется прежде всего обеспечить равнопрочность сварного соединения при максимальной сопротивляемости металла шва ползучести. Срок службы ракетного двигателя настолько мал, что вопросы длительной ока-линостойкости или стойкости сварного соединения против локальных разрушений в околошовной зоне не очень важны. Главное — жаропрочность шва, т. е. гарантия того, что он не будет деформироваться под действием огромных нагрузок и температур. Иное дело, авиационный двигатель. Здесь уже нужно думать об окалино-стойкости металла шва, о стойкости околошовной зоны против локальных разрушений. Конструктивные формы изделия такие, что, в ряде случаев, позволяют добиться равнопрочности сварного соединения при более низкой жаропрочности металла шва по сравнению с основным металлом. И, наконец, при сварке корпуса турбины или паропровода, прежде всего нужно заботиться о долговечности сварного соединения, учитывая процессы, могущие развиваться на протяжении многих десятков тысяч часов, например дисперсионное упрочнение металла шва, вызывающее снижение его пластических свойств и т. д. Первостепенной задачей здесь является предотвращение локальных разрушений в околошовной зоне. В случае кратковременной службы металл шва может не отличаться по своей композиции от основного металла, а вопросы упрочняющей или иной термической обработки в данном случае становятся второстепенными. В случае же длительной работы  [c.54]

При таком подходе можно считать, что при неустановившейся ползучести скорость деформационного упрочнения больше, чем скорость возврата, скорость деформации больше, чем скорость ползучести (у >Ys)> внутренние напряжения Т увеличиваются при увеличении времени и деформации. В отличие от этого установившаяся ползучесть является таким процессом, когда Т является постоянным. Действительно, как можно наблюдать в чистых металлах, в области неустановившейся ползучести деформация происходит путем скольжения внутри кристаллических зерен. В результате этого происходит релаксация локальной концентрации напряжений, возникающей вследствие взаимной интерференции полос скольжения, границ зерен или самих кристаллических зерен. Следовательно, происходит релаксация деформационного упрочнения. При этом кристаллические зерна разделяются полосами деформации или полосами сброса, происходит полигониза-ция, образуются субзерна. В области устаиовиви1ейся ползучести величина этих субзерен не изменяется, но изменяется относительное положение субзерен вследствие переползания или поперечного скольжения дислокаций, т. е. возврата. Эти факторы обусловливают деформацию ползучести [7].  [c.55]


В области вязких (внутризеренных) разрушений участки с пологим наклоном к оси времени (рис. 1.22) - с уменьшением относительной толщины разупроченной прослойки ае длительная прочность сварных соединений при ползучести повышается, а пластичность снижается [23]. Это обусловлено усилением эффекта стеснения деформаций ползучести прослойки более прочным прилегающим металлом (эффект контактного упрочнения).  [c.47]

Влияние разупрочненного металла шва на жаропрочность сварных соединений иное по сравнению с узкой прослойкой ЗТВр - относительная толщина металла шва значительно больше 0,5. .. 1 и 4рп 0,1. В связи с этим эффект контактного упрочнения металла шва при ползучести практически не реализуется, и жаропрочность сварных соединений определяется преимущественно длительной прочностью такого шва. Величина разупрочнения сварного шва зависит от состава и микроструктуры наплавленного металла.  [c.52]


Смотреть страницы где упоминается термин Металлы Ползучесть упрочнения : [c.196]    [c.288]    [c.14]    [c.48]    [c.101]    [c.136]    [c.63]    [c.98]    [c.112]   
Прочность, устойчивость, колебания Том 1 (1966) -- [ c.58 ]



ПОИСК



Упрочнение

Упрочнение металлов



© 2025 Mash-xxl.info Реклама на сайте