Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Карбидообразующие элементы

Приняв атомный радиус углерода равным 0,79 А, легко подсчитать, что у всех карбидообразующих элементов, кроме железа, марганца и хрома, отношения атомных радиусов углерода к металлу меньше 0,59.  [c.353]

Карбидообразующие элементы вносят не только количественные, но и качественные изменения в кинетику изотермического превращения. Та к, легирующие элементы, образующие растворимые в аустените карбиды, при разных температурах по-разному влияют на скорость распада аустенита 700—500°С (образование перлита)—замедляют превращение 500—400°С — весьма значительно замедляют превращение 400—300°С (образование бейнита) — ускоряют превращение.  [c.355]


Не все стали склонны к отпускной хрупкости II рода. Она не появляется у углеродистых сталей. Склонность к отпускной хрупкости возникает при легировании стали карбидообразующими элементами (марганца, хрома) при наличии в ней более 0,001% Р- Хром делает сталь особо чувствительной к условиям охлаждения при отпуске, особенно если, кроме хрома, сталь содержит еще никель или в повышенном количестве марганец. Если марганец и фосфор усиливают эту чувствительность, то молибден и в меньшей степени вольфрам уменьшают ее.  [c.374]

При высоком отпуске по границам зерна происходит более ускоренное (в сравнении с объемом зерна) карбидообразование и насыщение карбидной фазы марганцем, хромом, а также образование специальных карбидов (при соответствующей легированности). Этот процесс приводит к обеднению карбидообразующими элементами приграничных слоев зерна. При последующем медленном охлаждении (или во время выдержки при 500—520°С) происходит обогащение этих приграничных слоев фосфором, так как при температурах ниже 600°С фосфор приобретает стремление к диффузионному перераспределению в направлении участков, обедненных карбидообразующими элементами (явление восходящей диффузии), а диффузионная подвижность атомов фосфора при этих температурах достаточно велика. В итоге сталь охрупчивается из-за ослабления прочности межзеренных сцеплений.  [c.375]

Таким образом, красностойкость создается легированием стали карбидообразующими элементами (вольфрамом, молибденом, хромом, ванадием) в таком количестве, при котором они связывают почти весь углерод в специальные карбиды.  [c.421]

Карбиды образуются элементами, расположенными левее Ре в периодической системе эти элементы переходных групп имеют менее достроенную р-электронную оболочку. Крайнему левому элементу периодической системы соответствует более устойчивый карбид. По степени химического сходства с С карбидообразующие элементы составляют ряд Ре, Мп, Сг, Мо, , ЫЬ, V, Та, 2г, Т1. Причем элементы, расположенные в начале данного ряда, образуют менее устойчивые карбиды, легко диссоциирующие при нагреве, а элементы, расположенные в конце данного ряда, — более устойчивые карбиды, диссоциирующие лишь при температурах, превышающих критические точки сплавов.  [c.162]

Карбидообразующие элементы в зависимости от их количества и содержания С распределяются между различными фазами они растворяются в цементите и Ре, образуя новые карбиды.  [c.163]

Карбидообразующие элементы Сг, Мп, V, Т1, W, Мо сосредоточиваются в карбидной фазе, а некарбидообразующие элементы Со, N1 и др. — в легированном феррите.  [c.164]

Элементы, растворимые в феррите или цементите, замедляют изотермическое превращение (N1, Мп, Сг, 51 идр.) или ускоряют его (Со). Карбидообразующие элементы изменяют кинетику превращения  [c.167]


Легирующие элементы N1, Со, Мп и др., которые не образуют карбидов и находятся в твердом растворе феррита, почти не влияют на процессы отпуска, протекающие как и в углеродистой стали. 51, не являющийся карбидообразующим элементом и растворимый в а-фазе, хотя и не изменяет природы фазовых превращений при отпуске, однако смещает их вверх вследствие замедляющего влияния С на диффузию.  [c.169]

При значительном содержании карбидообразующих элементов и образовании специальных карбидов изменяется характер фазовых превращений при отпуске стали. Выделение специальных карбидов происходит при довольно высокой температуре (около 500—600° С) до этой температуры остаточный аустенит и мартенсит сохраняются, хотя мартенсит вследствие выделения метастабильного цементита теряет определенное количество С. После выделения специальных карбидов из мартенсита и аустенита при высоких температурах отпуска аустенит при охлаждении претерпевает карбидное превращение. Это вызывает  [c.170]

Для сталей III группы (среднеуглеродистых среднелегированных, содержащих карбидообразующие элементы) при сварке в широком диапазоне режимов характерно мартенситное превращение. Для них важно значение />ю, поскольку гомогенизация аустенита и рост зерна в связи с наличием специальных карбидов в исходной структуре замедлены и их можно регулировать с помощью режима сварки. Поэтому для получения благоприятной структуры при сварке этих сталей эффективно снижение q/v, применение концентрированных источников теплоты (плазменной, электронно-лучевой и лазерной сварки). Так-  [c.528]

Более прочные в температурном отношении карбиды содержат ванадий, ниобий, титан и другие карбидообразующие элементы.  [c.50]

При содержании углерода в количестве, недостаточном для образования ка )бидов со всеми присутствующими карбидообразующими элементами, карбиды будут образовываться теми элементами, которые обладают наибольшим химическим сродством с углеродом. Элементы с малым химическим сродством к углероду останутся в этом случае в твердом растворе или в виде других металлических соединений.  [c.73]

Если принять атомный радиус углерода, равный 0,076 нм, то легко подсчитать, что у всех карбидообразующих элементов, кроме железа, марганца и хрома, отношение атомного радиуса углерода Гс к атомному радиусу металла гд/ . меньше 0,59.  [c.75]

Исследования, проведенные В. Н. Земзиным и Р. 3. Шро-ном /7/ для сварки разнородных сталей, показали, что в составе металла шва обычно имеет место значительно большее содержание карбидообразующих элементов, чем в каж-  [c.16]

В сталях без карбидообразующих элементов или с малым их содержанием преимущественное развитие получает первая тенденция, что приводит к смещению области частичной закалки в сторону меньших скоростей охла кдения. В сталях, легированных карбидообразующими элементами, возможно смещение области частичной закалки в сторону больших скоростей охлаждения вследствие проявления второй тенденции.  [c.232]

Хром но отношению к кислороду обладает несколько большим сродством, чем железо, и образует окисел СгаО с высокой температурой плавления. Хром также обладает большим сродством к углероду, чем железо, и является карбидообразующим элементом. Он может входить в состав карбидов типа ] емептпт (Fo, Сг)зС и образует карбиды типов СГ7С3 и СггзС [иногда с частичной заменой атомов хрома другими, в частности железа, например (Fe, Сг)2зС(). Карбиды хрома термически более стойкие по срав-иению с карбидом железа, они растворяются медленнее и при более высоких температурах. В связи с этим для гомогенизации твердых растворов Fe—Сг—С требуется более высокая температура (рис. 128) и более длительная выдержка, чем для углеродистых сталей (- 900° С).  [c.258]

Специальными карбидами называются карбиды, образованные с участием карбидообразующих элементов и. вдеющие отличную от цеменхт. гт-. лу и кристаллическую решетку,  [c.349]

В сталях карбиды образуются только металлами, расположенными в периодической системе элементов левее железа (см. рис. 279). Эти металлы, как и железо, относятся к элементам переходных групп, но имеют менее достроенную d-электронную полосу. Чем левее расположен в периодической системе карбидообразующий элемент, тем менее достроена его rf-,пoяo a .  [c.352]


При последовательном переходе от атома водорода к другим эдементам периодической системы число электронов возрастает в соответствии с их атомным номером, причем электроны сначала занимают все места с наименьшими уровнями энергии, т. е. последовательно все места в первой оболочке, затем во второй и т. д. Однако у некоторых элементов, получивших наименование элементов переходных групп, на внешней (валентной) оболочке уже появляются I или 2 электрона еще до того, как достроена d-полоса предыдущей оболочки. К этим элемента.м относятся многие металлы, в том числе железо и карбидообразующие элементы.  [c.352]

Это положение позволяет указать условия образования карбидов в али при наличии нескольких карбидообразующих элементов, последователь- "ть растаорения в аустените различных карбидов и другие факторы, паж-[c.353]

У больи]инства карбидообразующих элементов соотношение Гг г = = <0,59, поэтому между ними и углеродом возможно образование фаз внедрения.  [c.353]

Таким образом, в сталях, легированных карбидообразующими элементами (хром, молибден, вольфрам), наблюдаются два максимума скорости изотермического распада аустенита, разделенных областью относительной устойчивости переохлажден-iHoro аустенита. Изотермический распад аустенита имеет два явно выраженных интервала превращений — превращение в пластинчатые (перлитное превращение) и превращение в игольчатые (бейнитные превращения) структуры.  [c.355]

Рис, 284. Схема диаграмм изотермического распада аустенита а — углеродистая сталь (I) и сталь, легированная пекарбидообра-зующими элементами (2) 6 — углеродистая сталь (/) н сталь, легированная карбидообразующими элементами (2)  [c.356]

Рассматривая условия, которые необходимо создать для охлаждения при закалке легированных конструкционных сталей, мы должны вспомнить еще об одной особенности кинетики распада аустенита сталей, легированных карбидообразующими элементами. В этих сталях (низкоуглеродистых) скорость бей-иитного превращения при 300—400°С оказывается существенно. более высокой, чем скорость перлитного распада (500—600°С) (см. рис. 284). Поэтому при закалке следует ускорять охлаждение в нижнем районе температур (при 300—400°С), чтобы избежать бейнитного превращения.  [c.371]

Благоприятное влияние небольших добавок молибдена (до 0,5—0,6%), тормозящих и даже иногда устраняющих отпускную хрупкость II рода, объясняется тем, что молибден слабо участвует в образовании легированною цементита (Fe, Мо)зС и при таких содержаниях не образует специальных карбидов. Поэтому обеднения приграничных участков зерен молибденом не происходит. Присутствие же молибдена в растворе уменьшает разницу в диффузионной подвижности атомов по границам н в об1>еме з(. рна и тем самым ослабляет возникновение неоднородности по другим карбидообразующим элементам. Вместе с тем молибден устрапж т вредное влияние фосфора по границам зерен.  [c.376]

Если ввести в сталь какой-нибудь карбидообразующий элемент в таком количестве, что он образует специальный карбид, то красностойкость скачкообразно возрастает. Дело в том, что специальный карбид выделяется из мартенсита и коагули-  [c.421]

При холодной сварке чугун сваривают без подогрева стальными, медножелезными, медноникелевыми электродами и электродами из аустенитного чугуна. В случае применения стальных электродов валики наплавляют низкоуглеродистыми электродами небольшого диаметра со стабилизирующей или качественной обмазкой, Применяют также стальные электроды со специальным покрытием, содержащим большое количество карбидообразующих элементов, дающим наплавленный металл с мягкой основой и вкраплениями карбидов. Эти способы не исключают образования отбеленных и закалочных структур в з. т, в., но они просты и обеспечивают мягкий хорошо обрабатываемый шов.  [c.234]

Сварка чугуна стальными электродами с карбидообразующими элементами в покрытии приводит к тому, что С, поступающий в шов из основного металла, связывается в труднорастворимые мелкодисперсные карбиды (обычно ванадия), содержащиеся в электродном покрытии, и структура шва получается ферритиой с включениями мелкодисперсных карбидов. Так, электроды марки ЦЧ-4, в покрытие которых вводится 70% феррованадия, обеспечивают наплавленный металл с содержанием V 9—10%. При сварке чугуна электродами из малоуглеродистой  [c.95]

Все легированные стали, особенно содержащие карбидообразующие элементы, после отпуска при одинаковых сравниваемых температурах обладают более высокой твердостью, чем углеродистые стали (рис. 122, а), что связаг 0 с замедлением распада мартенсита, образованием и коагуляцией карбидов. В сталях, содержащих большое количество таких элементов, как хром, вольфрам или молибден, в результате отпуска при высоких температурах (500—600 °С) наблюдается даже повышение прочности и твердости, связанное с выделением в мартенсите частиц специальных карбидов, повы-и1ающих сопротивление пластической деформации (рис. 122, а).  [c.188]

Легирующие элементы, присутствующие в стали, оказывают влияние на структуру цементуемого слоя, механизм его образования и скорость диффузии. В случае цементации сталей, легированных карбидообразующими элементами, при температуре диффузии возможно образование двухфазного слоя из аустенита и карбидов глобулярной формы. При этом аустенит обедняется углеродом и карбидообразующнми элементами (Сг, Мп, Ti) и на поверхности после закалки образуются пемартенситные структуры, способствующие снижению твердости и особенно предела выносливости. Суммарная концентрация углерода на поверхности цементированного слоя сталей, легированных карбидообразующими элементами, может достигать 1,5—2,0 % и более. Карбидообразующие элементы (Сг, Мп, Мо, W и др.) увеличивают энергию активации Q, уменьшают коэффициент диффузии углерода в аустените. Никель и кобальт повышают коэффициент диффузии углерода в аустените. Однако на толщину слоя, легирующие элементы в том количестве, в котором они присутствуют в цементуемых сталях, практически не влияют.  [c.233]


Если В стали имеется несколько карбидных фаз, то при введении нового, более эффективного карбидообразующего элемента, последний будет реагировать с С соединения, имеющего менее эффективный карбидообразователь. Например, в стали с карбидами Ред( У ,Мо)дС и Сг7Сд вначале V соединяется с С карбида Сг7Сд, а затем с С карбида Рбд( , Мо)дС. При этомСг и далее XV и Мо переходят в твердый раствор.  [c.165]

Легирующие элементы, кроме Мп, тормозят рост аустенитного зерна при нагреве. Карбидообразующие элементы У, Мо, V, Сг и Т1 существенно препятствуют росту зерна аустенита, причем степень этого влияния пропорциональна устойчивости их карбидов (и окси-доп). При небольщом содержании А1 образуются труднорастворимые оксиды А Оз и нитриды АШ, препятствующие росту зерна.  [c.169]

В сталях, микролегированных Мо, V, Nb, Ti, В, А и среднелегированных, в состав которых входят Сг, Мо и другие карбидообразующие элементы, рост зерна в процессе сварки не успевает завершиться. В этом случае появляется возможность существенно ограничить рост зерна, ужесточая высокотемпературную часть сварочного термического цикла. Весьма эффективно в этом отношении применение лучевых способов сварки, в том числе и для углеродистых и низколегированных сталей.  [c.513]

Для сталей I группы (углеродистых и низколегированных, не содержащих карбидообразующих элементов) наиболее важный параметр — We/s- Для них в пределах практически всех способов сварки можно обеспечить Шб/з < Шф ni и получить ферритоперлитную или перлитно-бейнитную структуру, не склонную к холодным трещинам. Поэтому для повышения сопротивляемости сварных соединений этих сталей образованию трещин эффективны повышение q/v и применение предварительного по-. догрева до температуры Т =- 370...570 К. Оптимальные g/v и Тп после теплового расчета СТЦ и определения Ше/з (<8/5) могут быть выбраны по диаграммам АРА.  [c.528]

Напряжения, возникающие в металле вследствие неравномерного нагрева и охлаждения, усадки способность высокоуглеродистых (С>0,25%) и легированных со стойкими карбидообразующими элементами(Сг, Мо, V, W - содержащих) сталей подвергаться закалке при охлаждении после сварки повышенное содержание вредных примесей в металле (серы, фосфора) попадание влаги на сварной шов при сварке наруше-ние технологии сварки  [c.131]

К третьей группе относятся элементы (Ti, Zr и др.), которые вследствие высокой химической активности практически полностью расходуются на образование карбидов, нитридов, оксидов и только в небольшом количестве рстворяются в феррите и цементите. Тугоплавкие включения, образующиеся еще в жидком расплаве, могут служить центрами кристаллизации графита. Поэтому титан, являющийся карбидообразующим элементом, в то же время способствует графитизации и размельчению графитовых включений.  [c.62]

Седла клапанов. Седла клапанов двигателей внутреннего сгорания работают в особо тяжелых ударно-переменных нагрузках и высоких температурных (700 - 1000°С) режимах. Поэтому к жаропрочному материалу для седел клапанов предъявляют особые требования необходимы высокая жаростойкость и сопротивление к газовой эрозии, коррозия и ползучести, высокие механические свойства, хорошая теплопроводность и небольшой коэ(1зфициент линейного расширения. В составе чугуна, кроме основных элементов (С, Si, Мп, S, Р), содержатся карбидообразующие элементы 2,75 - 3,25% Сг 4 - 5% Мо и до 0,3% Ni.  [c.66]

Цирконий является карбидообразующим элементом по аналогии с титаном. Это приводит к уменьшению склонности стали к росту зерна. Высокое химическое сродство к кислороду и сере обеспечивает его применение как добавки для размельчения структуры, повышения технологической пластичности и трещиноустойчи-вости металла при ковке и литье.  [c.83]

Поэтому в сталях, деформируемых при высоких температурах, замедлению рекристаллизации выделениями карбидов способствует введение карбидообразующих элементов, таких как титан, хром, молибден и т.п. Так, при сравнении сталей 06Х18Н11 и 06Х18Н11Т было непосредственно установлено влияние титана. Оказалось, что при 900°С рекристаллизация в стали, легированной титаном, замедляется в несколько раз, при 1000° С замедление оказывается слабее, а при 1100° С практически отсутствует.  [c.371]


Смотреть страницы где упоминается термин Карбидообразующие элементы : [c.354]    [c.392]    [c.423]    [c.136]    [c.179]    [c.201]    [c.167]    [c.205]    [c.73]    [c.187]   
Структура коррозия металлов и сплавов (1989) -- [ c.146 ]

Металловедение и термическая обработка (1956) -- [ c.345 , c.346 ]



ПОИСК





© 2025 Mash-xxl.info Реклама на сайте