Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Реакционная способность

Альдегиды относятся к числу ограниченно нормируемых компонентен ОГ. Контроль соединений этого класса затруднен из-за нестабильности, высокой реакционной способности и малых концентраций. Один и.з методов анализа альдегидов основан на специфической реакции этих соединений с 2,4-  [c.22]

Наличие только одного элемента системы — выпускного клапана бензобака, отрегулированного на давление открытия 1,5-10 Па, обеспечивает снижение образования паров бензина в 3. .. 3,5 раза. Этот бензин остается в баках автомобилей. Применение СУТИ на легковом автомобиле экономит в среднем 36 г бензина в сутки с умеренным климатом, а на грузом автомобиле или автобусе — до 100 г. В условиях жаркого климата эффект СУТИ еш,е выше. Учитывая высокую реакционную способность углеводородов в процессе образования фотохимического смога в атмосфере некоторых южных городов страны, возможность непосредственной экономии бензина, наиболее целесообразно использование недорогих и надежных си-сте.м улавливания топливных испарений на автомобилях, поставляемых в южные районы страны.  [c.82]


За последнее время уделяется большое внимание влиянию субструктуры на коррозию металлов. Дефекты структуры, выходящие на поверхность металла, обладают повышенной реакционной способностью и по ним идет в первую очередь растворение металла. В зависимости от плотности активных мест, обусловленных на различны верн х " выходом дислокаций на поверхность,  [c.327]

Полимеры содержат большое число реакционно-способных групп (табл.6), из которых не все принимают участие в реакции. Например, наличие гидроксильных групп приводит к понижению химической стойкости полимеров. Соединения, у которых водород в полиэтиленовой цепи замешен фтором или фтором и хлором (фторопласты), стойки во многих агрессивных средах.  [c.32]

В предыдущих главах рассматривались вопросы равновесия металла со средой, и эти сведения позволяют судить о термодинамической возможности коррозии. Однако на практике основным предметом наших исследований являются скорости коррозии. Некоторые металлы, например алюминий, магний, обладая достаточно высокой реакционной способностью, тем не менее реагируют настолько медленно, что вполне удовлетворяют требованиям к конструкционным материалам, и в некоторых средах могут оказаться устойчивее, чем металлы изначально более инертные.  [c.46]

Некоторые из предложенных объяснений склонности ферритных нержавеющих сталей к межкристаллитной коррозии основаны на разнице скоростей растворения различных образующихся карбидов или на предполагаемой большей реакционной способности напряженной кристаллической решетки металла. Однако наиболее убедительное объяснение получено с помощью теории, широко используемой для объяснения этих явлений в аустенитных нержавеющих сталях. Согласно этой теории, разрушения происходят вследствие обеднения границ зерен хромом [36—38]. Различия в температурах и времени, необходимых для сенсибилизации этих сталей, объясняются более высокими скоростями диффузии углерода, азота и хрома в ферритной объемно-центрированной кубической решетке по сравнению с аустенитной гранецентрированной. В соответствии с этим, карбиды и нитриды хрома, которые растворены при высокой температуре, ниже  [c.310]

Всякая химическая реакция атомов связана с поведением так называемых валентных (оптических) электронов. Поглощение световой энергии атомами может изменить состояние валентных электронов или оторвать их от атома, следовательно, изменить реакционную способность атомов.  [c.355]

В обычной атмосфере титан стоек по отношению к окислению до 400 - 500°С при более высоких температурах он проявляет большую реакционную способность к взаимодействию с кислородом, азотом и водородом. Можно значительно увеличить жаростойкость титана путем его легирования хромом и особенно алюминием и кремнием.  [c.78]


Абсолютная активность компонента В — функция состояния вещества, находящегося в чистом состоянии или в смеси с другими веществами, являющаяся количественной характеристикой реакционной способности вещества в заданных условиях и связанная с химическим потенциалом Цд соотношением  [c.216]

Принцип действия топливного элемента. Топливный элемент является химическим генератором электрической энергии (называемым электрохимическим генератором), в котором внутренняя или химическая энергия подаваемых в элемент активных (т. е. реакционно-способных) веществ в результате электрохимических реакций окисления вещества, служащего топливом, и восстановления вещества, являющегося окислителем, преобразуется в электрическую энергию.  [c.594]

Внутренняя, или, как говорят еще, химическая энергия подаваемых в элемент активных (т. е. реакционно-способных) веществ в результате электрохимических реакций (главным образом окисления) преобразуется в электрическую энергию (рис. 8.50). По механизму преобразования энергии топливный элемент подобен гальваническому элементу. Различие состоит в том, что в гальваническом элементе весь запас активных материалов заключен в электродах. Поэтому время их действия ограничено массой и количеством электролита, тогда как в топливном элементе расходуемые активные материалы непрерывно восполняются в результате подвода извне. Другое отличие заключается в природе активных материалов если в гальванических элементах применяются только твердые вещества (металлы и их окислы), то в топливных элементах используются жидкие и газообразные активные вещества.  [c.569]

Влияние состояния поверхности металла минимально для адсорбирующихся соединений со значительной реакционной способностью и максимально для соединений с небольшой реакционной способностью.  [c.146]

Допускаемые значения qv зависят от реакционной способности топлива (выхода летучих V" ), способа шлакоудаления, конструктивных особенностей топки (для ЖШУ). Зависимости qv от У для различных топлив показаны на рис. 33. При малом выходе летучих для догорания коксового остатка требуется больше времени, поэтому высота топки и ее объем имеют большие значения. При ЖШУ температура в зоне горения, особенно в двухкамерных топках за счет уменьшения отвода теплоты, выше, горение протекает более интенсивно, что позволяет увеличить qy. Для торфа  [c.69]

Кристаллический кремний при комнатных температурах обладает невысокой реакционной способностью он весьма устойчив на воздухе, покрываясь тонкой пленкой диоксида кремния. Кремний  [c.287]

Применить метод инертной метки для оценки скоростей диффузии компонентов через реакционный слой не удалось вследствие высокой реакционной способности бериллия. Об участии компонентов в процессе диффузии мы судили по некоторым внешним  [c.97]

Важной стороной механизма защитного действия на сталь силиката натрия явилось выяснение его реакционной способности по отношению к различным фор-> мам оксидов железа, образующихся на поверхности стали.  [c.75]

Быстро растущий в последнее время интерес к поверхностям раздела станет понятным, если проследить историю развития композитов с металлической матрицей. Ранние работы по композитным материалам были направлены на выявление принципов, определяющих их эксплуатационные характеристики. Для этой цели, были удобны простые модельные системы. При выборе модельных систем руководствовались в основном совместимостью упрочните-ля и матрицы модельные системы состояли из матриц (нанример,. серебра или меди), химически малоактивных но отношению к упрочнителям (например, вольфраму или окиси алюминия). Хотя в этих работах и признавалась важная роль поверхностей раздела, модельные системы позволяли сравнительно легко получать тип поверхности, обеспечивающий необходимую передачу нагрузки от одного компонента композита к другому. В системах, представляющих большой практический интерес, матрицами служат обычные конструкционные материалы, такие, как алюминий, титан,, железо, никель они обладают большими реакционной способностью и прочностью, чем матрицы модельных систем. Повышенная реакционная способность затрудняет управление состоянием поверхности раздела, а для передачи больших нагрузок требуется более высокая прочность этой поверхности. Таким образом, состояние поверхности раздела становилось все более важным фактором по мере того, как интересы исследователей перемещались от модельных систем к перспективным инженерным материалам.  [c.12]


Проблемы, связанные с состоянием поверхности раздела, свойственны не только композитам с металлической матрицей. Для улучшения состояния поверхности раздела в стеклопластиках стеклянные волокна подвергают аппретированию. Известно, что оптимальное аппретирование является нелегким компромиссом между рядом требований, таких, как защита отдельных нитей от механических повреждений, хорошая связь стекла с полимером, сохранение этой связи в условиях эксплуатации, особенно в присутствии влаги. Оптимизация состояния поверхности раздела в композитных материалах с металлической матрицей требует, по-видимому, аналогичных компромиссных решений. Требования к поверхности раздела в металлических композитных материалах не менее жестки, чем для стеклопластиков. Так, уже упоминалась химическая несовместимость многих сочетаний матрица — волокно вследствие как недостаточной, так и излишней реакционной способности (в первом случае имеются в виду системы, где механическая связь компонентов не достигается из-за отсутствия соот-  [c.12]

Исследованы два способа подавления образования нежелательных фаз на поверхности раздела. Первый способ состоит в создании покрытия на волокне, а второй —в использовании сплавов, имеющих пониженную реакционную способность.  [c.127]

Реакционная способность силанов по отношению к органической составляющей композита. Чтобы обеспечивать хорошее связывание составляющих композита по поверхности раздела и тем самым улучшать передачу напряжений от матрицы к упрочнителю, необходимо также знать факторы, обусловливающие адгезионную связь между силаном и полимером. Для объяснения эффективности силанов в повышении адгезии аппретированного стекловолокна к полимеру предложены следующие механизмы адгезионной связи  [c.145]

Изготовление нмфытых электродов. Электрод, состоящий из металлического стержня и толстого покрытия, расплавляясь, должен обеспечивать постоянство вводимых в реакционную зону компонентов но объему, их химическому составу и реакционной способности.  [c.99]

Реакционная способность (химическое сродство) металлов и термодинамическая устойчивость продуктов химической коррозии металлов характеризуются изменением стандартных изобарноизотермических потенциалов AGf соответствующих реакций (например, окисления металлов кислородом или другим окислителем), отнесенным к 1 г-экв металла, т. е. AGr/mn (рис. 7 и 8). Более отрицательные значения AGf/mn указывают на более высокую реакционную способность (химическое сродство) металла и более высокую термодинамическую устойчивость продукта химической коррозии металла.  [c.27]

Наиболее распространенным видом деструкции высокомоле кулярных веществ является окисление, а в еще больщей степени— озонирование. Окисление насыщенных соединений благодаря их меньшей реакционной способности протекает менее с.амет-но и с меньшим ухудшсриюм эксплуатационных свойств.  [c.360]

Науглероживание идет тем быстрее, чем выше температура расплава больше поверхность соприкосновения твердой и жидкой фаз интенсивное перемешивание, отражаемое коэффициентом выше реакционная способность науглерожива-теля.  [c.266]

Создаются также припципиальпо новые виды печей, например горизонтальные печи непрерывного действия, рассмотренные в 14-5, а также индукционно-плазменные печи. Последние сочетают два вида нагрева, при этом обеспечиваются интенсивное перемешивание расплава, как в любой индукционной печи, и высокая температура и реакционная способность шлака, как в любой дуговой или плазменной печи.  [c.230]

Преимуществами топок с ТШУ являются простота конструкции, обеспечивающая меньшие затраты на изготовление и ремонт, возможность комплектации ее более простыми схемами пылепри-готовления, малая чувствительность к качеству топлива, широкий ди.апазон изменения нагрузок котла. К недостаткам следует отнести невозможность обеспечения нужной экономичности сжигания топлив с пониженной реакционной способностью (У " < 20%). Более высокая концентрация золы по тракту котла приводит к увеличению абразивного изнашивания поверхностей и лопаток дымососа, гидравлического сопротивления газового тракта, количества выбросов частиц золы в атмосферу. Кроме того, возникает необходимость в золоотвалах (площадях для размещения уловленной золы), снижаются допускаемые теплонапряжения, а следовательно, возрастают размеры топки.  [c.73]

Реакционная способность сплава снижается при добавке в сплав бериллия в K0JjH4e TBe 0,05—0,07%.  [c.88]

Согласно третьей технологической схеме используемые для синтезирования поликристаллов неорганические соединения первоначальгю растворяются в воде, а в случае невозможности (как например окись лантана) — в кислотах. На необходимую смесь растворов воздействуют жидким осадителем осадок фильтруют, сушат и спекают. Последующие операции обработки спеков не отличаются от аналогичных, проводимых по второй схеме. Изделия, получаемые по второй схеме, имеют меиыиую усадку, чем по первой состав керамики можно строго контролировать введением искусственно синтезируемых соединений получают керамические материалы с повышенными свойствами. Вместе с тем для использования предварительно синтезированных соединений проводится вторичный обжиг при относительно высоких температурах. При третьей схеме благодаря иовышенргой реакционной способности соединений, полученных осаждением, образование поликристаллов  [c.143]

Детально изучена способность к химическому взаимодействию органогидридсиланов с различными органическими и неорганическими веществами, имеющими. подвижный атом водорода. Найдены катализаторы, повышающие реакционную способность связи кремний—водород в триорганогидрид силанах. Разработан обширный класс новых органосиликатных материалов, образующихся путем химического взаимодействия поли-органосилоксанов с гидроксилсодержащими силикатами и окислами некоторых элементов.  [c.6]

Объективная основа для объединения в общую классификационную схему материалов, на первый взгляд разнородных, существует. Она состоит в том, что сочетание типичных для силикатов свойств (механическая прочность, высокая термостойкость, стойкость в условиях воздействия атмосферных факторов и др.) с присущими органическим (элементоорганическим) полимерным и низкомолекулярным соединениям свойствами (гидрофобпость олеофильность реакционная способность различных функциональных групп упруго-пластические и адгезионные свойства полимеров химическая стойкость в некоторых средах, разрушающе действующих на силикатные материалы, и др.) придает полученному новому материалу отличительные, типичные уже для органосиликатного материала в целом новые ценные качества.  [c.22]


Островский В. В., Харитонов Н. П. Исследование механизма разложения полиорганосилоксанов методом масс-спектрометрии и дериватографии. — Тез. докл. 1-го Всесоюз. симп. Строение и реакционная способность кремнийорганических соединений . Иркутск, 1977, с. 87-88.  [c.184]

Первоначально при выборе матрицы и волокна для всех систем предполагали использовать те же основные принципы, что и для модельных систем. Джех и др. [22] показали справедливость правила смеси для композитов как с непрерывными, так и с короткими волокнами, избрав для этого систему медь — волокно. Медь и вольфрам, по существу, взаимно не растворимы и не взаимодействуют химически соответственно они не образуют соединений. Таким же образом Саттон и др. [38] на модельной системе серебро — усы сапфира убедительно продемонстрировали эффект упрочнения нитевидными кристаллами. Степень взаимодействия между серебром и усами сапфира даже меньше, чем между медью и вольфрамом, поскольку расплавленное серебро не смачивает сапфир. Для улучшения связи с расплавленным серебром те же авторы напыляли на поверхность сапфира никель. Однако связь между никелем и сапфиром была, вероятно, чисто механической, а на поверхности раздела никель — сапфир твердый раствор не образовывался. Поэтому не удивительно, что Хиббард [21] в обзоре, представленном в качестве вводного доклада на конференции 1964 г. Американского общества металлов, посвященной волокнистым композитным материалам, счел необходимым заключить Для взаимной смачиваемости матрицы и волокна необходимо, чтобы их взаимная растворимость и реакционная способность были малы или вообще отсутствовали . Это условие, как правило, реализуется для определенного типа композитных материалов, а именно, ориентированных эвтектик. Во многих эвтекти-ках предел растворимости несколько изменяется с температурой, что, вообще говоря, является причиной нестабильности, хотя в известной степени и компенсируется особым кристаллографическим соотношением фаз. Однако в большинстве практически важных случаев это условие не выполняется. После конференции 1964 г. основные успехи были достигнуты в области управления состоянием поверхности раздела между упрочнителем и матрицей. Ни серебро, ни медь не являются перспективными конструкционными материалами. Что же касается реакций между практически важными матрицами и соответствующими упрочнителями, то они очень сложны и могут приводить к самым разнообразным типам поверхностей раздела.  [c.13]

Усиление связи особенно важно для композитов, упрочненных AI2O3. Этот О кисел плохо смачивается многими металлами, за исключением металлов с очень высокой реакционной способностью, например циркония. Но в последнем случае волокно может оказаться поврежденным. Связь в композите должна быть достаточно прочной, чтобы нагрузка могла передаваться от волокна к волокну. Это особенно важно в случае, когда упрочнителем служат короткие усы. Следовательно, должна быть оптимальная степень химического взаимодействия, так как реакция, с одной стороны, увеличивает силу связи, а с другой — приводит к уменьшению прочности волокон или усов из-за разъедания их поверхности. Этот вопрос обсуждался Саттоном [44] применительно к модель-  [c.126]

Рост интереса к исследованию поверхностей раздела был связан с переходом от модельных систем к композитам, матрицами которых являются важные конструкционные металлы — алюминий, титан и металлы группы железа. Эти металлы обычно более химически активны, чем серебряные и медные матрицы исследованных модельных систем, таких, как Ag—AI2O3 и Си—W. Однако приведенные в настоящей главе данные по казывают, что известная реакционная способность может благоприятствовать достижению желательного комплекса механических свойств. Выше приводились примеры, когда определенное развитие реакции на поверхности раздела обеспечивало оптимальное состояние последней. Бэйкер [1] показал, что композиты алюминий—нержавеющая сталь обладают наилучшими усталостными характеристиками в условиях слабо развитой реакции, а Бзйкер и Крэтчли [2] установили то же самое для системы алюминий—двуокись кремния.  [c.180]

Форрест и Кристиан [10], сопоставляя системы А1—В, А1—B/Si и А1—B/BN, пришли к выводу, что лучшим комплексом свойств обладает система А1—В, наиболее склонная к химическому взаимодействию. Возможно, на этот вывод повлияли и другие факторы— способ изготовления, близость условий изготовления к оптимальным и т. д. тем не менее остается фактом, что системы, реакционная способность которых уменьшена путем покрытия бора Si или BN, не обладают преимуществами по сравнению с химически более активной системой А1—В. С таким выводом согласуются и данные Кляйна и Меткалфа [15] о том, что продольная прочность и деформация разрушения композитов А1—В достигают максимума при наличии небольшого количества продукта реакции.  [c.182]

Реакционная способность силанов по отношению к неорганической составляюицей композита. На выяснение механизма адгезионной связи силановых аппретов с поверхностями неорганических материалов и, в частности, стекловолокна затрачены значительные усилия ученых. Почти невозможно получить непосредственные данные о характере механизма адгезионных связей. Поэтому адгезионное взаимодействие силановых аппретов с поверхностью стекловолокна объясняется на основе косвенных данных, которые позволяют предположить следующие механизмы связи  [c.144]

ВЛИЯНИЕ РЕАКЦИОННОЙ СПОСОБНОСТИ Н-ГРУППЫ В СИЛАНОВОМ АППРЕТЕ НА ПРЕДЕЛ ПРОЧНОСТИ НА ИЗГИБ ПОЛИЭФИРНОГО КОМПОЗИТА, АРМИРОВАННОГО СТЕКЛОТКАНЬЮ )  [c.146]


Смотреть страницы где упоминается термин Реакционная способность : [c.58]    [c.27]    [c.223]    [c.239]    [c.290]    [c.215]    [c.16]    [c.25]    [c.26]    [c.29]    [c.33]    [c.33]    [c.456]   
Производство ферросплавов (1985) -- [ c.42 ]

Физико-химическая кристаллография (1972) -- [ c.85 ]



ПОИСК



Алкидные смолы реакционная способность

Восстановитель углеродистый реакционная способность

Зависимость расхода углерода и ЭДС поляризации от реакционной способности угольного анода

Низкая реакционная способность

Реакционная способность металлов и термодинамическая устойчивость продуктов химической коррозии металлов

Реакционная способность поверхности волокон

Реакционная способность. Катализ

Титана реакционная способность

Топливо Реакционная способность

Фенол, реакционная способность



© 2025 Mash-xxl.info Реклама на сайте