Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Метод смешанный (перемещений)

Изложенные выше вопросы теории и практического применения одномерного варианта МГЭ показывают его эффективность и преимущества перед МКЭ, МКР, методами сил, перемещений, смешанным методом, методом начальных параметров и другими методами. Не попавшие в наше поле зрения другие задачи механики линейных систем (соответственно и линейные задачи электротехники, теплотехники, гидравлики, физики и т.д.) также могут решаться предложенным алгоритмом. Для этого любую задачу необходимо представить в форме решения задачи Коши (1.32) и далее применять алгоритма краевой задачи (1.38) - алгоритм одномерного варианта МГЭ.  [c.184]


Расчет статически неопределимых систем может быть произведен различными методами. Наиболее известны метод сил, метод перемещений, смешанный метод, различные приближенные методы.  [c.66]

В рассматриваемом методе общие уравнения теории упругости решают смешанным методом, т. е. за основные искомые функции принимают перемещения ы, Иу, Uz(Ux, Uy) и напряжения Х , Y ,  [c.16]

При смешанном методе решения задачи за неизвестные принимают частично усилия и частично перемещения (см. расчет пологих оболочек и симметричных оболочек вращения).  [c.239]

Используя осевую симметрию, проводим расчет для /в части плиты, заштрихованной на рис. 140. Для определения шести неизвестных усилий Xi в стержнях и равномерного (перемещения штампа 2о надо составить шесть канонических уравнений смешанного метода и одно статическое уравнение 2Z = 0. При окончательном подсчете надо учесть, что к квадрату 1 приложено восемь равных сил (так как этот квадрат входит во все восемь частей основа-  [c.371]

Помимо двух основных рассмотренных методов решения задач теории упругости в напряжениях и в перемещениях часто используется смешанная форма решения, когда разрешающие уравнения составляются частично относительно перемещений, а частично относительно напряжений. Такой прием рассмотрим ниже в задаче расчета оболочек (см. гл. 7).  [c.46]

Вообще в выборе основных неизвестных и метода получения уравнений для них можно провести аналогию с теорией расчета статически неопределимых систем, излагаемой в курсе строитель ной механики стержневых систем. Там, как известно, есть три основных метода метод сил, метод деформаций и смешанный метод. Неизвестные силы определяются из уравнений деформаций (канонические уравнения в методе сил), неизвестные перемещения (углы поворота и смещения узлов рам)—из уравнений равновесия.  [c.30]

Выражения (2.3.1), (2.3.3) и (2.3.4), содержащие восемь уравнений, имеют восемь неизвестных и потому их можно решить по методу сил, по методу перемещений или, наконец, по смешанному методу.  [c.34]

Совершенно очевидна возможность применения смешанного метода, когда назначаются приближенные выражения для некоторых компонентов перемещений и напряжений.  [c.63]

Возможно также и такое решение, при котором частью неизвестных являются перемещения узловых точек, а частью — напряжения в узлах. В этом случае получаемая система алгебраических уравнений является аналогом смешанного метода строительной механики.  [c.119]


Кроме того, следует отметить, что метод конечного элемента существенно объединяет классические методы расчета сооружений метод сил, метод перемещений, смешанный метод в единый универсальный метод, кстати, построенный на широком использовании матричного аппарата, весьма удобного как при записи промежуточных преобразований и окончательных выражений, так и при общении человека с современными вычислительными средствами (цифровыми вычислительными машинами), особенно при использовании алгоритмических языков (Алгол, Фортран и т. п.).  [c.136]

В результате, если при выборе расширенной плиты получено п групп неизвестных, природа которых в общем случае не существенна, каждую из групп можно определить неизвестной пока функцией Х а, Ь, ), и п групп условий, каждую из которых можно сформулировать как и х, у, ) = 0, то можно составить соответствующие уравнения, которые по своему существу будут являться каноническими уравнениями либо метода сил, либо метода перемещений, либо смешанного метода. Система уравнений, таким образом, может быть представлена в виде  [c.170]

Расчет статически неопределимых систем может быть произведен различными методами. Наиболее известны метод сил, метод перемещений, смешанный метод, различные приближенные методы. В последнее время получили широкое распространение методы расчета с применением ЭВМ метод конечных разностей, метод конечного элемента.  [c.7]

Если рассматривается смешанная задача, т. е. на одной из граней полосы заданы перемещения, а на другой напряжения, более удобным оказывается решение в перемещениях с использованием описанного метода перехода от краевой задачи к задаче Коши (см. 28).  [c.68]

Результаты теоретических и экспериментальных исследований ползучести гибких, шарнирно опертых по краю сферических оболочек под действием постоянного внешнего давления приведены в работе [82]. Численные исследования проведены на основе вариационного уравнения смешанного типа, ползучесть материала описана теорией течения. Силы, моменты, перемещения аппроксимированы полиномами с двумя-тремя искомыми параметрами. Использование вариационного принципа [72] приводит к системе дифференциальных уравнений по времени, которые интегрируются методом Рунге — Кут-та. Время потери устойчивости оболочки определяется ло резкому осесимметричному выпучиванию. Описаны методика и результаты экспериментальных исследований ползучести нейлоновых оболочек. Отмечается большой разброс значений критического времени в дублирующих опытах, значительные расхождения в результатах теоретических и экспериментальных исследований.  [c.10]

РЕШЕНИЕ ОБЩЕЙ СИСТЕМЫ УРАВНЕНИЙ СТРОИТЕЛЬНОЙ МЕХАНИКИ, СМЕШАННЫЙ МЕТОД И МЕТОД ПЕРЕМЕЩЕНИЙ  [c.34]

Б качестве неизвестных входят усилия 5 и перемещения Z, следовательно, ее можно трактовать как систему смешанного метода. Эта система содержит большое число уравнений 6 (р + s).  [c.37]

Поскольку станционные трубопроводы представляют собой многократно статически неопределимые системы, их расчет на температурную самокомпенсацию, а также на действие весовой нагрузки, нагрузок от смещения опор и монтажной растяжки производят методами строительной механики (метод сил, метод перемещений, комбинированный и смешанный методы, метод конечного элемента) [14, 15]. Для расчета трубопроводов широко применяют  [c.369]

Сравнение МГЭ с алгоритмом смешанного метода показывает, что логика формирования разрешаюш,ей системы уравнений МГЭ более простая и требует составления одной матрицы коэффициентов А , а в смешанном методе матрица коэффициентов формируется из двух матриц. Отметим также, что заполненность матрицы А МГЭ для данного примера равна 19,4 %, в смешанном методе - 21,5 %. После прямого хода метода Гаусса заполненность матрицы МГЭ уменьшается (18%), а заполненность матрицы смешанного метода увеличивается (22,3%). Учитывая, что по МГЭ определяются начальные параметры, а по смешанному методу - узловые усилия и перемещения, можно считать, что трудоемкость расчета ферм по МГЭ будет меньше, чем по смешанному методу.  [c.60]


Позже бьши разработаны другие эффективные методы расчета складчатых систем. Отметим метод перемеш,ений, основанный на решениях М. Леви (изгиб) и Л. Файлона (плоская задача) для прямоугольных пластин [4] и различные модификации метода перемещений и смешанного метода [186, 344]. Метод перемещений устраняет многие недостатки метода В.З. Власова в части реализации алгоритма расчета на ЭВМ. Однако, он привносит в методику расчета недостатки, связанные с природой метода перемещений. В частности, формирование матрицы реакций требует привлечения матричных операций. Обязательное формирование основной системы привносит недостатки, связанные с ее использованием. Необходимы промежуточные вычисления для перехода от перемещений узлов к напряженно-деформированному состоянию во внутренних точках элементов системы. Метод разработан только для шарнирного опирания торцов конструкции. Сходные недостатки можно обнаружить и в смешанном методе. Следует отметить, что последний недостаток метода перемещений устраним, поскольку решения М. Леви и Л. Файлона являются частными случаями вариационного метода В.З. Власова. Поэтому можно разработать метод перемещений для произвольного опирания торцов складчатой системы. Если пренебречь влиянием побочных коэффициентов системы дифференциальных уравнений В.З. Власова, то алгоритм формирования матриц реакций и нагрузки останется прежним, а изменяется лишь фундаментальные функции. Можно дальше модифицировать метод перемещений. В I разделе отмечалось, что на базе соотношений МГЭ  [c.479]

СМЕШАННЫЙ МЕТОД И МЕТОД ПЕРЕМЕЩЕНИИ  [c.92]

СМЕШАННЫЙ МЕТОД И МЕТОД ПЕРЕМЕЩЕНИЙ  [c.93]

Дополнительными условиями к этим функционалам служат геометрические граничные условия для тех компонентов перемещений и статические — для тех компонентов функций напряжений, которые являются их аргументами. Условия стационарности — уравнения смешанного метода теории упругости [3.2] и соответствующие граничные условия.  [c.83]

Здесь рассматривается решение в перемещениях. Существует разновидность метода конечных элементов, в которой в качестве основных неизвестных принимают силы взаимодействия между элементами [4 5] возможна также смешанная формулировка.  [c.106]

Отметим некоторые преимущества смешанной вариационной формулировки задачи (1.82), (1.83) по сравнению с классическим методом перемещений. При решении задач прикладной теории упругости и строительной механики методом конечных элементов сходимость решений в ряде случаев определяется реакцией элемента на смещения как жесткого целого и геометрической изотропией (когда не отдается предпочтение какому-либо направлению) аппроксимации деформаций. Плохая сходимость решений, в первую очередь, характерна для криволинейных элементов оболочечного типа, поскольку аппроксимация перемещений полиномами низкой степени является грубой для описания смещений как жесткого целого. Такие элементы могут накапливать ложную деформацию и вносить существенные погрешности в решение задач. При учете деформаций поперечных сдвигов и обжатия в многослойных оболочечных элементах учет смещения как жесткого целого становится особенно важным, поскольку при уменьшении параметра тонкостенности (A/i ) указанные деформации стремятся к нулю, а коэффициенты их вклада в общую потенциальную энергию стремятся к бесконечности. Таким образом, погрешности в вычислении деформаций усиливаются и могут дать значительную ложную энергию, превосходящую энергию изгиба или энергию мембранных деформаций. Независимая аппроксимация полей деформаций в пределах конечного элемента при использовании смешанного метода позволяет обеспечить минимальную энергию ложных деформаций и требуемый ранг матрицы жесткости.  [c.23]

Метод синоптический 936, XII. Метод смешанный (перемещений) 159, XIII.  [c.486]

Можно показать, что классические методы строительной механики (методы сил, перемещений, смешанные), система функционалов для строительной механики стержневых систем, предложенная И.И. Голь-денблатом [5.8], как и некоторые варианты метода конечных элементов [5.11], исходят из функционала граничных условий многоконтактной задачи.  [c.172]

ПО—112 Разрушения усталостные — см усталостные разрушения Рамы статически неопределимые — Расчет методом перемещений 501 - многоэтажные со стенками вертикальными — Расчет методом перемещений 495, 499, 500 — Расчет методом сил 489 --плоские — Расчет методом перемещений 494 — Расчет методом сил 487—490 — Расчет методом смешанным 501, 502 - плоскопространственные — Моменты изгибающие и крутящие — Эпюры 491, 492 — Расчет методом сил 490, 491  [c.824]

Из существа составления канонических систем уравнений метода сил и метода перемещений вытекает, что применение первого метода целесообразно в конструкциях с малым числом связей применение второго, наоборот, даст лучшие результаты при большом числе связей. Если же данная конструкция может быть разбита на две части, обладающие двумя указанными противоположными качествами, то возмож- Фиг. 29. пример но одновременное примене- образования основ-ние обоих методов (смешан- смешТнном рёше-ное решение). Например, нии  [c.149]

Рекач В. Г. Точное определение касательных перемещений при расчете пологих сферических оболочек смешанным методом. Тезисы докладов IV научно-техничёской конференции инженерного факультета УДН, УДН, 1968, Клейн Г. К-, Рекач В. Г., Р о з е н б л а т Г. И. Руководство к практическим занятиям по курсу строительной механики. Высшая школа , 1972.  [c.381]


В том случае, когда разрез является частью плоскости симметрии задачи, ставятся смешанные граничные условия на поверхности разреза — условия для вектора напряжений, а на про-должепии его — нулевые касательные напряжения и нулевые нормальные перемещения. В такой постановке решен ряд пространственных модельных задач по определению коэффициента интенсивности напряжений [92]. Интегральное уравнение решалось методом механических квадратур [231, 271]. В таблице 14.3  [c.106]

В разд. III, наибольшем по объему из всех разделов этой главы, изучаются задачи о плоской конечной деформации. Здесь поясняются некоторые подробности методов решения. Краевые задачи в перемещениях можно решать чисто кинематически, не пользуясь ни развернутыми гипотезами относительно связи напряжений с деформациями, ни даже уравнениями равновесия. В краевых задачах в напряжениях и в смешанных краевых задачах необходимо постулировать определенные зависимости, описывающие поведение материала под действием касательных напряжений. Для простоты мы ограничимся исследованием упругого сдвига или квазиупругого поведения пластических или вязкоупругих материалов. Основы теории разд. III заимствованы из работы Пиикина и Роджерса [26].  [c.290]

Пек и Гёртман рассматривали полубесконечную среду, ограниченную плоскостью Xi = 0 и нагружаемую равномерно распределенным по границе нормальным давлением. Зависимость внешнего давления от времени выбиралась в форме ступеньки— единичной функции Хевисайда. Касательные напряжения на границе не задавались вместо этого при Х = 0 было наложено требование равенства нулю перемещений, параллельных осям Xi и лгз. Подобные смешанные граничные условия обычны для задач о механических волноводах, поскольку они позволяют построить решение путем наложения бесконечных синусоидальных волновых пакетов. Было найдено точное решение для компоненты dujdxi тензора деформаций в виде суперпозиции синусоидальных мод — бесконечной суммы интегралов Фурье по бесконечным интервалам. Асимптотическое приближение к точному решению для больших значений времени и больших расстояний было построено при помощи метода перевала.  [c.372]

Алгоритм МГЭ устраняет практически все отмеченные выше недостатки существующих методов. Так, для формирования системы уравнений (1.46) не используются матричные операции, не формируется основная система, снимаются ограничения на условия опирания модулей по торцам (граничные условия могут быть любым, а каждый модуль может иметь смешанные граничные условия и включать как прямоугольные, так и круглые подмодули), матрица А сильно разрежена, хорошо обусловлена и может применяться в задачах статики, динамики и устойчивости, возможен учет ортотропии, ребер жесткости в двух направлениях, упругого основания, переменной толпщны, температуры и т.д. Таким образом, уравнение (7.133) с преобразованием (1.46) охватывает практически наиболее общий случай расчета. Перечисленные преимущества сопровождаются, как это бывает всегда, и недостатками. В частности, порядок матрицы А может значительно превышать порядок матрицы реакций метода перемещений. Однако, этот недостаток компенсируется тем, что больший порядок системы уравнений (1.46) позволяет получить существенно больше информации, чем по методу перемещений. Точность МГЭ покажем на тестовом примере [4, с.379].  [c.486]

При решении задачи теории пластичности можно использовать те же способы, что и в теории упругости решение в напряжениях, в перемещениях и смешанный способ. Точно так же возможно применение методов теории упругости, а именно прямого, обратного и полуобрат-ного. Однако решение задачи теории пластичности имеет свои специфические особенности вследствие нелинейности. Эффективным является приближенный метод, предложенный А. А. Ильюшиным, — метод упругих решений (разновидность метода последовательных приближений).  [c.229]

Рассмотренная процедура МКЭ характерна для метода перемещений. Функционал (1.2) называется функционалом полной потенциальной энергии системы или функционалом Лагранжа. Если в основу решения задачи положен функционал Кастильяно, то такой вариант МКЭ аналогичен методу сил, а если функционал Рейсснера, то смешанному методу. В практической реализа-  [c.7]

Любой из приведенных в гл.1.4 функционалов может быть использован для построения конечно-элементных соотношений, т.е. для решения задач механики деформируемого тела с помощью метода конечных элементов. Используя принцип возможных перемещений (1.4.14), придем к построению МКЭ в варианте метода перемещений. Принцип возможных напряжений (1.4.50) приведет к МКЭ в варианте метода сил. При использовании смешанных вариационных принцицов (1.4.58), (1.4.61) получим смешанные формулировки МКЭ. Модифицированный принцип возможных перемещений (1.4.62), допускающий независимую аппроксимацию компонентов перемещений на границе и по объему каждого из конечных элементов, приводит к так назы,-ваемым гибридным формулировкам МКЭ.  [c.63]

Для сотфащения числа неизвестных разработан смешанный метод, при использовании которого на одной части системы отбрасываются связи (метод сил), а на другой ее части -накладываются (метод перемещений). Затем составляется совместная система уравнений, часть из которых соответствует методу сил, а часть - методу перемещений.  [c.87]

Имеется несколько разновидностей метода конечных элементов решение в перемещениях, в силах, смешанная формулировка, гибридный подход. Наибольшее распространение у нас в стране и за рубежом получил метод перемещений, поскольку он обладает целым рядом достоинств, среди которых можно отметить простоту, удобство реализации на ЭВМ, естественную приспособленность к анализу динамических проблем, Применительно к расчету пластин и оболочек, где создание эффективных конечных элементов в перемещениях дли Т У1Ьное время наталкивалось на серьезные трудности, были разработаны и успешно использовались конечные элементы так называемого гибридного типа. Однако в конце 70-х годов эти трудности удалось в значительной степени преодолеть, что позволяет избежать применения сложных гибридных элементов.  [c.10]

Особое внимание уделено смешанным вариационным формулировкам двух типов. Первая соответствует смешанному вариационному принципу Рейссиера, вторая — задачам на экстремум полной потенциальной энергии системы при наличии дополнительных условий в виде дифференциальных уравнений связи между перемещениями и их производными. Для одномерных задач предлагается вариационно-матричный способ вывода канонических систем разрешающих дифференциальных уравнений. Для двумерных задач рассматриваются вопросы реализации решений с использованием проекционных методов типа Рэлея—Ритца и конечных элементов с учетом специфики смешанной вариационной формулировки.  [c.5]


Смотреть страницы где упоминается термин Метод смешанный (перемещений) : [c.206]    [c.100]    [c.620]    [c.205]    [c.214]    [c.224]   
Техническая энциклопедия Том15 (1931) -- [ c.0 ]

Техническая энциклопедия Том 11 (1931) -- [ c.0 ]



ПОИСК



112, при конечных перемещениях 112 Смешанный метод расчета 87 - Статическая неопределимость 81 - Уравнения

112, при конечных перемещениях 112 Смешанный метод расчета 87 - Статическая неопределимость 81 - Уравнения равновесия стержней и узлов 89, механики 89 - Условия подобия 89 - Устойчивость 96 - Энергия линейной деформации

I смешанные

Метод перемещений

Метод перемещений и метод сил

Метод смешанный

Непосредственное формирование и решение некоторых систем уравнений. Статически определимые задачи. Смешанный метод. Метод перемещений

Основы метода перемещений и смешанного метода Основные уравнения метода перемещений

Рамы статически неопределимые — Расчет методом перемещений смешанным

Решение общей системы уравнений строительной механики, смешанный метод и метод перемещений

Смешанный метод и метод перемещений

Смешанный метод и метод перемещений



© 2025 Mash-xxl.info Реклама на сайте