Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Алгоритм для смешанного метода

Сравнение МГЭ с алгоритмом смешанного метода показывает, что логика формирования разрешаюш,ей системы уравнений МГЭ более простая и требует составления одной матрицы коэффициентов А , а в смешанном методе матрица коэффициентов формируется из двух матриц. Отметим также, что заполненность матрицы А МГЭ для данного примера равна 19,4 %, в смешанном методе - 21,5 %. После прямого хода метода Гаусса заполненность матрицы МГЭ уменьшается (18%), а заполненность матрицы смешанного метода увеличивается (22,3%). Учитывая, что по МГЭ определяются начальные параметры, а по смешанному методу - узловые усилия и перемещения, можно считать, что трудоемкость расчета ферм по МГЭ будет меньше, чем по смешанному методу.  [c.60]


Позже бьши разработаны другие эффективные методы расчета складчатых систем. Отметим метод перемеш,ений, основанный на решениях М. Леви (изгиб) и Л. Файлона (плоская задача) для прямоугольных пластин [4] и различные модификации метода перемещений и смешанного метода [186, 344]. Метод перемещений устраняет многие недостатки метода В.З. Власова в части реализации алгоритма расчета на ЭВМ. Однако, он привносит в методику расчета недостатки, связанные с природой метода перемещений. В частности, формирование матрицы реакций требует привлечения матричных операций. Обязательное формирование основной системы привносит недостатки, связанные с ее использованием. Необходимы промежуточные вычисления для перехода от перемещений узлов к напряженно-деформированному состоянию во внутренних точках элементов системы. Метод разработан только для шарнирного опирания торцов конструкции. Сходные недостатки можно обнаружить и в смешанном методе. Следует отметить, что последний недостаток метода перемещений устраним, поскольку решения М. Леви и Л. Файлона являются частными случаями вариационного метода В.З. Власова. Поэтому можно разработать метод перемещений для произвольного опирания торцов складчатой системы. Если пренебречь влиянием побочных коэффициентов системы дифференциальных уравнений В.З. Власова, то алгоритм формирования матриц реакций и нагрузки останется прежним, а изменяется лишь фундаментальные функции. Можно дальше модифицировать метод перемещений. В I разделе отмечалось, что на базе соотношений МГЭ  [c.479]

Метод характеристик имеет ряд преимуществ по сравнению с другими численными методами основные уравнения значительно упрощаются на характеристических поверхностях, метод отличается математической строгостью (доказана сходимость метода и единственность решения). Эти обстоятельства обусловили широкое использование численного метода характеристик при решении двумерных задач для уравнений гиперболического типа. Применение метода к трехмерным задачам сильно затруднено сложным поведением характеристических поверхностей, что обусловливает трудности построения характеристической сетки, громоздким алгоритмом вычислений и сложностью программирования. В связи с этим метод характеристик в его чистом виде до настоящего времени применялся для расчетов трехмерных течений лишь в очень небольшом числе случаев. Для решения трехмерных задач сверхзвукового обтекания тел представляются более перспективными методы конечных разностей-и смешанные методы (комбинации двумерного метода характеристик и метода конечных разностей по третьей переменной).  [c.169]


Изложенные выше вопросы теории и практического применения одномерного варианта МГЭ показывают его эффективность и преимущества перед МКЭ, МКР, методами сил, перемещений, смешанным методом, методом начальных параметров и другими методами. Не попавшие в наше поле зрения другие задачи механики линейных систем (соответственно и линейные задачи электротехники, теплотехники, гидравлики, физики и т.д.) также могут решаться предложенным алгоритмом. Для этого любую задачу необходимо представить в форме решения задачи Коши (1.32) и далее применять алгоритма краевой задачи (1.38) - алгоритм одномерного варианта МГЭ.  [c.184]

Метод расчета напряженно-деформированного состояния цилиндрических складчатых систем разработал проф. В.З. Власов [24]. К недостаткам метода В.З. Власова следует отнести сложную логику формирования разрешающей системы уравнений, необходимость решать дифференциальные уравнения для каждого элемента конструкции, ограничения на торцевые условия опирания элементов складчатых систем (они должны быть одинаковыми), относительную сложность реализации алгоритма на вычислительных машинах. Позже были разработаны другие эффективные методы расчета складчатых систем. Отметим метод перемещений, основанный на решениях М. Леви (изгиб) и Л. Файлона (плоская задача) для прямоугольных пластин с шарнирным опиранием по торцам [2] и различные модификации метода перемещений и смешанного метода [46, 104]. Метод перемещений устраняет многие недостатки метода В.З. Власова в части реализации алгоритма на персональных компьютерах. Однако он привносит в методику расчета недостатки, связанные с природой метода перемещений. В частности, формирование матрицы реакций требует привлечения матричных операций, образование основной системы привносит недостатки, связанные с ее использованием, необходимы промежуточные вычисления для перехода от перемещений узлов к напряженно-деформированному состоянию во внутренних точках элементов системы.  [c.232]

В трех последних задачах матрицы получаемых алгебраических систем имеют знакопеременный спектр, что типично для смешанной формулировки метода конечных элементов. Но применение многосеточных итерационных алгоритмов остается таким же эффективным, как для положительно определенных матриц.  [c.12]

Аналогично при имитации смешанных стратегий, где в качестве случайных параметров рассматривается удельный вес каждого способа производства в общем объеме производства промышленной продукции, также можно получить бесконечное множество смешанных стратегий. Поэтому для группировки исходных сочетаний случайных величин, полученных методами статистического моделирования, на третьем этапе методики прогнозирования ВЭР используются алгоритмы машинного распознавания образов. Решением задач теории распознавания образов является такое правило распознавания (классификации), которое соответствует экстремуму целевой функции — показателю качества распознавания (обучения). При этом правильный выбор информативных признаков, в которых сосредоточена наиболее существенная для распознавания информация, является одной из важнейших и необходимых предпосылок успешного решения задачи распознавания в целом. В данном случае полученные путем машинной имитации совокупности случайных параметров естественно интерпретировать как точки в многомерном пространстве, инфор-  [c.270]

Следующие шаги иллюстрируют метод решения, основанный на уравнениях (2.5) и фактически являющийся примером применения непрямого МГЭ. В результате получается алгоритм, применяемый без изменений к любым одномерным задачам о стационарном потенциальном течении. Для большей ясности мы продемонстрируем его на смешанной граничной задаче, представленной на рис. 2.6. Ключевой методический прием состоит в помещении реальной системы (рис. 2.6) в неограниченную область для построения фиктивной системы, изображенной на рис. 2.7. Причина добавления  [c.29]


Таким образом, ключевым моментом метода ортогональных функций является нахождение спектральных соотношений для главных частей интегральных операторов смешанных задач. Ряд таких соотношений установлен довольно давно и приведен в монографиях Г. Я. Попова [42,43]. Автор, во-первых, связал получение спектральных соотношений с существованием специального класса полиномиальных ядер (П-ядер), а, во-вторых, использовал для их вывода алгоритмы контурного интегрирования.  [c.125]

При смешанном раскрое часть полос располагается вдоль листа, а часть — поперек (рис. 6.7, е). Смешанный раскрой на полосы выполняют методом наилучшего заполнения короткой стороны листа. Для этого подбирают такое сочетание размеров заготовки Л и D, при котором ширина отхода между участками листа С и I наименьшая. Применяя тот же принцип раскладки заготовок, находят наибольшую плотность их расположения и на других участках листа — М, N, Р, Q (рис. 6.7, в). Раскрой выполняется с помощью ЭВМ, структурная схема алгоритма показана на рис. 6.7, г. При смешанном раскрое общее число заготовок, расположенных на листе, определяют по формуле  [c.81]

В данной работе предлагается принципиально новый метод расчета цилиндрических складчатых систем, основанный на алгоритме МГЭ для стержневых систем. Теоретической основой метода является вариационный метод Канторовича-Власова. Решение задачи Коши изгиба прямоугольной пластины представлено в 6.2. Его можно использовать для расчета пластинчатых систем в случаях, когда плоским напряженно-деформированным состояниям элементов можно пренебречь. Алгоритм МГЭ устраняет практически все отмеченные выше недостатки существующих методов. Так, для формирования системы разрешающих уравнений типа (1.38) не используются матричные операции, не рассматривается основная система, снимаются ограничения на условия опирания пластин по торцам (граничные условия могут быть любыми, а каждая пластина может иметь смешанные граничные условия и включать как прямоугольные, так и круглые элементы), матрица коэффициентов А сильно разрежена, хорошо обусловлена и может приметаться в задачах статики, динамики и устойчивости, возможен учет ортотропии, ребер жесткости, упругого основания, переменной толщины и т.д. Таким образом, алгоритм МГЭ охватывает практически наиболее общий случай расчета. Перечисленные преимущества сопровождаются, как это бывает всегда, и недостатками. В частности, порядок матрицы А существенно больше порядка матрицы реакций метода перемещений. Однако этот недостаток  [c.232]

В главе 6 на конкретных примерах показаны возможные пути обобщения результатов для нелинейных уравнений и систем. Два первых параграфа посвящены изложению общих результатов по сходимости метода конечных элементов для нелинейных задач с операторами монотонного типа и решению двух типичных нелинейных задач, распространенных в приложениях, с помощью многосеточных итерационных алгоритмов. Решение плоской задачи упругости демонстрирует возможность обобщения построенных алгоритмов и их обоснования для эллиптических систем зфавнений. Среди многих известных методов дискретизации бигармонического уравнения рассмотрена смешанная формулировка метода конечных элементов, приводящая к системе двух уравнений Пуассона с зацепленными краевыми условиями. В итоге обобщенная формулировка содержит только первые производные и отпадает необходимость использования сложных базисных функций из класса С (И ). Смешанная формулировка использована также для дискретизации стационарных задач Стокса и Навье — Стокса. Здесь применялись комбинации простых конечных элементов — линейные для скоростей и постоянные для давления.  [c.12]

Задачи автоматизации конструкторского проектирования делятся на задачи топологического и геометрического проектирования. Формализация задач топологического проектирования наиболее просто производится с помощью теории графов. Для автоматизации решения задач компоновки и размещения в основном используются комбинаторные алгоритмы и алгоритмы, основанные на методах математического программирования. В наибольшей степени структуре задач компоковки и размещения соответствуют комбинаторные алгоритмы (переборные, последовательные, итерационные, смешанные и эвристические). Для решения задач трассировки применяются распределительные и геометрические алгоритмы.  [c.67]

Численные алгоритмы, основанные на методе характеристик имеют ярко выраженную модульную структуру. Они заключаются в последовательном выполнении более простых алгоритмо (модулей), предназначенных для вычисления решения во внутренних и различного рода граничных узлах характеристической сетки. В предыдущем параграфе были приведены такие алгоритмы для некоторого класса гиперболических уравнений газовой динамики. Зная, как с помощью метода характеристик определить решение в точке, можно решать некоторые типичные для гиперболических уравнений задачи. К таким задачам относятся задача Коши, задача Гурса и смешанная задача. Схемы решения их методом характеристик и алгоритм решения описаны в 2.2. Алгоритмы решения задачи Коши, Гурса и смешанной задачи можно рассматривать как модули более высокого уровня (макромодули).  [c.125]

Примеры применения метода характеристик. Численные алгоритмы, основанные на методе характеристик, имеют модульную структуру, заключающуюся в последовательном выполнении более простых алгоритмов (модулей), предназначенных для вычисления решения во внутренних и различного рода граничных узлах характеристической сетки. В предыдущих пунктах были описаны такие алгоритмы для некоторого класса гиперболических уравпений газовой дипамики. Алгоритмы решения задачи Коши, Гурса и смешанной задачи можно рассматривать как модули более высокого уровня (макромодули, см. п. 1.2.6). Введем следующие обозначения Д/]—модуль расчета внутренней точки области, М2 — модуль расчета точки на степке в случае стационарного течення (или на поршпе в нестационарном течении), 71 з — модуль расчета точки на свободной границе в случае стационарного сверхзвукового течения (или контактной поверхности в случае нестационарного течения),  [c.80]


В этом параграфе мы рассмотрим алгоритм, используемый в смешанном методе для системы уравнений второго порядка. Его конструкция отличается от приведенной в 4.8 выбором итерационных параметров и другим смыслом, вкладьтаемым в операции интерполяции и проектирования.  [c.192]

Подобное исследование приводит к необходимости решения краевой задачи теории упругости в сложной области, которое может быть осуществлено в точной постановке лишь для некоторых идеализированных случаев. Одной из традиционных идеализаций является предположение о неограниченности области, в которой расположены дефекты. Методы определения напряжённого состояния упругих тел вблизи внутренних концентраторов напряжений в виде систем трещин, разрезов и тонких включений изложены в монографиях Н.И. Мусхелишвили [107], Г.Я. Попова [115], Т.Н. Савина [125]. Случаи, когда дефекты расположены вблизи границы упругого тела, не могут рассматриваться в рамках упомянутой выше идеализации. В.В.Можаров-ским и В.Е. Старжинским [104] предложен метод решения плоской контактной задачи для полосы, дискретно спаянной с основанием (имеющей конечное число разрезов на границе их раздела). Система круговых отверстий, расположенных вблизи границы полуплоскости, рассмотрена в [125]. Однако алгоритмы решения задач, развитые в [104, 125] и некоторых других работах, достаточно сложны для конкретных реализаций (особенно в случае исследования смешанных задач теории упругости) и, кроме того,  [c.205]

Дается обзор работ, посвященных развитию метода ортогональных функций (ортогональных многочленов) для решения интегральных и интегро-дифференци-альных уравнений смешанных задач. Эти исследования шли, в основном, по трем направлениям 1) получение новых спектральных соотношений для интегральных операторов, соответствующих главным частям интегральных уравнений рассматриваемых задач, с использованием в дальнейшем классической схемы алгоритма ортогональных функций 2) модификация проекционного метода Галеркипа, приближенное построение систем собственных функций и собственных чисел интегральных операторов смешанных задач 3) использование метода ортогональных функций для решения интегральных уравнений эволюционного типа, содержащих оператор Фредгольма по координатам и оператор Вольтерра по времени.  [c.125]

Решение смешанных краевых задач 3 и 4 для 1-й схемы более удобно осуществлять модификацией метода характеристик по слоям 11 = соп51 (см. 3.5.2). Это обусловлено тем, что при реализации на ЭВМ данных задач вычисления проводятся по единому алгоритму на регулярной расчетной сетке. Существо предложенной модификации состоит в следующем. Численный расчет проводится в треугольной области на подвижной сетке, одно семейство которой образуется линиями тока, а другое формируется в процессе расчета. Выбор вида последнего семейства определяется формой расчетной области и характером течения в ней.  [c.177]


Смотреть страницы где упоминается термин Алгоритм для смешанного метода : [c.192]    [c.129]    [c.312]    [c.237]    [c.162]    [c.147]    [c.337]    [c.49]    [c.337]    [c.337]   
Смотреть главы в:

Многосеточные методы конечных элементов  -> Алгоритм для смешанного метода



ПОИСК



I смешанные

Алгоритм

Метод смешанный



© 2025 Mash-xxl.info Реклама на сайте