Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Гипотеза теории упругости

Теория тонких оболочек, кроме общих гипотез теории упругости, использует также предположение о прямых нормалях, применяемое в теории пластин линейные элементы оболочки, нормальные к срединной поверхности, остаются прямолинейными и перпендикулярными к срединной поверхности и после ее деформации. Предполагается, что нормальные напряжения, перпендикулярные к срединной поверхности, пренебрежимо малы.  [c.72]


Даже для тел, имеющих форму стержня, средствами сопротивления материалов в ряде случаев решение получить не удается, например, в задачах о кручении стержней некруглого поперечного сечения, определении компонентов касательных напряжений при изгибе стержня, направленных перпендикулярно к плоскости изгиба и др. Когда решение может быть получено и методами сопротивления материалов, но приближенно, с использованием гипотез, теория упругости позволяет произвести оценку точности этого решения.  [c.610]

Процесс деформирования называется абсолютно упругим, если после снятия нагрузки деформации полностью исчезают и при этом восстанавливаются первоначальные размеры тела и его форма. Такой процесс соответствует гипотезе об абсолютной или идеальной упругости тела. Построенная на основании этой гипотезы теория упругости составляет наиболее обширный раздел механики деформируемого твердого тела. В большинстве задач сопротивления материалов также используется гипотеза об идеальной упругости тела.  [c.8]

С целью аналитического описания закритического деформирования, являющегося частью методического обеспечения подобного рода экспериментов, воспользуемся известными гипотезами теорий упругого и упругопластического изгиба. Будем полагать, что поперечные  [c.226]

В теории же упругости конечной целью обычно является определение перемещений точек упругого тела, для которого задаются первоначальная форма, условия закрепления и нагрузка. При этом требуется определить и форму тех участков поверхностей, ограничивающих тело, перемещения которых явным образом не заданы. Иными словами, краевые условия в теории упругости, вообще говоря, задаются на границах, форма которых зависит от искомых величин. Поэтому наиболее подходящим математическим аппаратом будут в данном случае криволинейные координаты Лагранжа х, у, г, поскольку в них уравнения границ тела после деформации будут иметь вид, идентичный уравнениям границ тела до деформации. Можно привести и другие соображения в пользу выбора этой системы координат. В частности, использование ряда важных деформационных гипотез теории упругости (например, гипотезы прямых нормалей в теории пластин и оболочек, плоских сечений в теории изгиба) оказывается наиболее удобным именно в координатах х, у, г (ввиду простоты записи в данной системе уравнений материальных волокон и слоев как до, так и после деформации).  [c.18]


Так же, как и в теории кручения, оказывается возможным перенесение в область пластичности известных гипотез теории упругого изгиба. Будем предполагать, что поперечные сечения. в процессе изгибания остаются, плоскими и нормальными к линии центров тяжести сечений (кинематическая гипотеза), и все компоненты напряжений пренебрежимо малы по сравнению с нормальным напряжением в этих сечениях (статическая гипотеза). Очевидно, что сделанные гипотезы остаются в силе и при наложении на изгиб равномерного растяжения и сжатия.  [c.95]

Зуб рассматриваем как консольную балку, для которой справедлива гипотеза плоских сечений или методы сопротивления материалов. Фактически зуб подобен выступу, у которого размеры поперечного сечения соизмеримы с размерами высоты. Точный расчет напряжений в таких элементах выполняют методами теории упругости [351. Результаты точного расчета используют для исправления приближенного расчета путем введения теоретического коэффициента концентрации напряжений (см. ниже). На расчетной схеме (см. рис. 8.19)  [c.119]

Стержни с непрерывно меняющимися по длине размерами сечений. Если размеры сечения стержня непрерывным образом изменяются по длине, то фор<мулы, полученные на основании гипотезы плоских поперечных сечений, становятся, вообще говоря, неверными (как и сама гипотеза). Однако некоторые точные решения теории упругости показывают, что в том случае, когда угол наклона образующей поверхности стержня к его осп невелик (не превышает 15— 20 ), с достаточной для инженерной практики точностью можно принимать распределение нормальных напряжений по высоте сечения прямолинейным. Тогда, естественно, можно пользоваться обычным условием прочности и дифференциальным уравнением упругой линии, т. е.  [c.302]

В книге, наряду со сводкой основных уравнений и формул, выведенных из общих уравнений теории упругости с применением различных упрощающих рабочих гипотез, приведены задачи прикладного характера, посвященные статическому и динамическому расчетам гибких нитей, плоского и пространственного, сплошного и тонко-  [c.463]

Первые исследователи в области теории упругости (Л. Навье, О. Коши, С. Пуассон, Г. Ламе, Б. Клапейрон и др.) исходили из гипотезы о том, что идеально упругое тело состоит из молекул, между которыми при его деформировании возникают взаимодействия. Так как молекулярные механизмы в среде не рассматриваются и все вводимые понятия и величины представляются как средние макроскопические или феноменологические, то их принимают в качестве истинных. В этом состоит идеализация истинной физической среды в механике.  [c.24]

Под прикладной теорией упругости понимают обычно раздел теории упругости, в котором кроме предположения об идеальной упругости материала вводятся дополнительные упрощающие гипотезы, такие как гипотезы плоских сечений или об отсутствии взаимодействия между продольными волокнами стержня в сопротивлении материалов. Так, например, для пластин и оболочек вводится упрощающая гипотеза о прямолинейном элементе, ортогональном к срединной поверхности как до, так и после деформации и др. В основном в прикладной теории упругости изучаются расчеты на изгиб и устойчивость тонкостенных элементов конструкций тонкостенные стержни, пластины, оболочки.  [c.185]

В пособии изложены методы решения задач прикладной теории упругости, приведены расчеты плоской гибкой нити, сплошного стержня, тонкостенного стержня открытого профиля, тонких пластинок и оболочек, толстых плит, призматических пространственных рам, массивных тел и непрерывных сред. Каждая глава содержит общие положения, принятые рабочие гипотезы, расчетные уравнения на прочность, устойчивость и ко-  [c.351]


В настоящем учебном пособии, которое является продолжением указанной книги, наряду со сводкой основных уравнений и формул приводится решение задач прикладной теории упругости (нити, стержни, тонкостенные и массивные пространственные системы), т. е. задач, при решении которых введены различные рабочие гипотезы, упрощающие основные уравнения теории упругости, и краевые условия поставлены в интегральной форме для определенных участков контура или в локальной форме для отдельных линий или точек сечения контура.  [c.3]

Приближенная теория расчета толстых плит переменной толщины h = h(x, у) построена В. 3. Власовым на основе метода начальных функций в задачах теории упругости с введением следующих упрощающих гипотез для основных неизвестных смешанного метода [8].  [c.204]

Классические уравнения теории тонких оболочек, основанные на гипотезах Кирхгофа — Лява (гл. VII), становятся неприемлемыми с увеличением толщины оболочки, а поэтому расчеты толстых оболочек (R h 6) опираются уже на исходные уравнения теории упругости.  [c.307]

Если в теории сопротивления материалов расчетные формулы получают на основе гипотезы недеформируемого поперечного сечения стержня, то в теории упругости это ограничение не учитывается. Выводы теории упругости позволяют рассматривать деформации упругих тел произвольных размеров и очертаний, которые не могут быть решены элементарными методами теории сопротивления материалов. Вместе с тем теория упругости так же, как и другие разделы механики сплошных сред, не может обойтись без некоторых общих предположений относительно модели рассматриваемого тела. Такие предположения предусматривают  [c.5]

При изучении курса Сопротивление материалов основное внимание сосредоточивалось на анализе напряженно-деформированного состояния прямолинейных стержней при осевом растяжении-сжатии, изгибе и кручении. Решение соответствующих задач было получено с использованием гипотезы плоских сечений. Вопрос о том, в какой степени такие решения согласуются со строгими решениями, удовлетворяющими уравнениям теории упругости, остался открытым.  [c.128]

Итак, решение, полученное в сопротивлении материалов для закручиваемого стержня круглого поперечного сечения, основанное на гипотезе плоских сечений, удовлетворяет всем уравнениям теории упругости при условии, что внешние моменты создаются силами, распределенными по поперечному сечению по тому же закону, что и касательные напряжения х х, (или, что то же самое, полные касательные напряжения Тг).  [c.137]

Гипотеза прямой нормали дает возможность выразить деформации в любой точке оболочки через деформации ее срединной поверхности, которые зависят от двух координат г), и таким образом свести решение трехмерной задачи теории упругости к двухмерной.  [c.200]

Чтобы решить проблему прочности брусьев при различных деформациях, необходимо прежде всего выяснить, какой вид имеет тензор напряжений, а затем установить формулы для его компонентов. В сопротивлении материалов, решая такие задачи, используют рабочие гипотезы. Устанавливаются они экспериментально и подтверждаются строгими методами теории упругости.  [c.9]

Основные гипотезы и принципы механики сплошной среды и линейной теории упругости  [c.5]

Для брусьев, формы поперечных сечений которых отличны от круга или кольца, гипотеза плоских сечений при кручении не соблюдается, и решение задачи об определении напряжений и углов закручивания может быть дано только методами теории упругости.  [c.60]

Точная теория изгиба пластинок, исходящая из основных уравнений теории упругости, весьма сложна. Ее методами пока решены только некоторые простейшие задачи. В связи с этим возникла необходимость в приближенной теории расчета пластинок, которая, основываясь на ряде допущений, давала бы близкие к точным, но более простые решения важнейших практических задач. Такая теория создана работами многих ученых в первой половине XIX в. Приближенная теория изгиба пластинок, которая называется технической теорией пластинок, базируется на следующих двух основных гипотезах (гипотезах Кирхгофа)  [c.498]

Однако следует отметить здесь те цели, которые имеются в виду при отыскании решений. Приближенные методы отыскания напряжений и деформаций в упругих телах, основанные на частных гипотезах простейшего характера, принято относить к тому, что называется сопротивлением материалов. Примером может служить приближенная теория растяжения и изгиба стержней, изложенная в гл. 2, 3 и 5. Теория упругости позволяет получить точное решение задачи изгиба для определенных случаев и сравнить его с приближенным таким образом, находится строгая оценка погрешности элементарной теории.  [c.266]

Элементарная теория, изложенная в гл. 3 и 4, основывалась на гипотезах, введенных ad ho и обоснованных лишь некоторыми соображениями качественного характера. Здесь мы получим те же уравнения, отправляясь от общих законов теории упругости. Наиболее надежный путь построения приближенных теорий, который будет использован в настоящей главе, состоит в том, что за основу принимаются вариационные уравнения теории упругости в одной из форм, приведенных в 8.7. После этого делаются некоторые предположения о характере распределения перемещений или напряжений (или того и другого независимо). Дифференциальные уравнения приближенной теории получаются как уравнения Эйлера вариационной задачи для функций от переменных, число которых меньше трех.  [c.386]


Аналогичным образом нужно было бы исправить и общие формулы (12.13.1), но ошибка, которая получается, если пренебречь этой поправкой, имеет порядок hIR по сравнению с единицей. Доказано (в результате достаточно сложных вычислений, выходящих за рамки нашего курса), что сама гипотеза прямых нормалей вносит погрешность порядка hJR по сравнению с точным решением задачи теории упругости, поэтому удержание членов такого порядка в приближенной теории лишено смысла.  [c.420]

Так называемая деформационная теория пластичности представляет по существу распространение на пластическое тело того закона связи между напряжениями и деформациями, который устанавливается нелинейной теорией упругости. Пластический потенциал, который заменяет здесь упругий потенциал, для изотропного тела есть функция инвариантов тензора деформаций. Обычно нри этом применяются следующие гипотезы  [c.533]

Основное предположение линейной механики разрушения состоит в том, что трещина распространяется тогда, когда величина коэффициента интенсивности достигает критического значения, характерного для данного материала. Совершенно эквивалентная формулировка этого предположения состоит н том, что сила G, движущая трещину, превосходит критическое значение — сопротивление распространению трещины. Формула (19.4.4) утверждает эквивалентность двух этих формулировок. Что касается механического содержания принятой гипотезы и всей теории в целом, на этот вопрос можно ответить по-разному, а в рамках формальной теории вообще его можно не ставить. Тем не менее некоторые соображения могут быть высказаны. В оригинальной работе Гриффитса предполагалось, что освобождающаяся при росте трещины упругая энергия расходуется на увеличение поверхностной энергии если есть поверхностная энергия на единицу площади, то сила сопротивления движению трещины G = Анализ Гриффитса в течение долгих лет считался безупречным, хотя в нем содержится некоторый органический дефект. Энергия поверхностного натяжения вводится в уравнения теории как нечто данное и постороннее по отношению к упругому телу. На самом деле, поверхностная энергия есть энергия поверхностного слоя, свойства которого в той или иной мере отличаются от свойств остального материала и при решении задачи теории упругости этот поверхностный слой нужно как-то моделировать. Простейшая схема будет состоять в том, чтобы рассматривать поверхностный слой как бесконечно тонкую пленку с постоянным натяжением 7. Если контур свободного отверстия имеет кривизну, то поверхностное натяжение дает нормальную составляющую силы на контуре. При переходе к разрезу, в вершине которого кривизна становится бесконечно большой, поверхностное натяжение создаст сосредоточенные силы. В результате особенность у кончика трещины оказывается более высокого порядка, а именно, вида 1/г, а не 1/У г. На это обстоятельство было обращено внимание Гудьером, однако полное решение задачи было опубликовано много позже. В связи с этим можно выразить сомнение, связанное с тем, в какой мере пригодно представление о поверхностном натяжении в твердом теле как о натянутой бесконечно тонкой пленке, а особенно в какой мере эта идеализация сохраняет смысл при переходе к пределу, когда отверстие превращается в бесконечно топкий разрез.  [c.664]

Таким образом, напряжения (5.24), полученные на основании гипотезы плоских сечений, подтверждаются теорией упругости, когда сила Р распределена по торцу по такому же закону, как и касательные напряжения При другом законе распределения силы Р выражения для напряжений будут иными, но на основании принципа Сен-Венана значительная разница будет только вблизи торца.  [c.68]

Надо сказать, что задача о кручении стержня может быть решена не только методами сопротивления материалов, но также и методами теории упругости без принятия каких-либо гипотез, кроме предположения о непрерывности строения вещества. Решение, полученное этим путем, показывает, что круглое поперечное сечение бруса действительно остается плоским и поворачивается как жесткое целое. В поперечных сечениях возникают только касательные напряжения.  [c.110]

Не принимая каких-либо вспом[огательных гипотез, теория упругости не может все же обойтись без абстрагирования изучаемого объекта. Реальные твердые тела рассматриваются в виде модели, наделяемой лишь их основными и общими свойствами, характерными при определенных условиях. В зависимости от особенностей принимаемой модели твердых тел теория упругости подразделяется на классическую, линейную и нелинейную.  [c.4]

В инженерной практике довольно часто кручению подвергаются стержни, имеющие не круглое, а прямоугольное, треугольное, эллиптическое и другие сечения. В этих случаях гипотеза плоских сечений неприменима, так как сечения искривляются (депланируют). Точные расчеты стержней некруглого сечения можно получить методами теории упругости. Однако поскольку в настоящем курсе нет возможности их изложить, приведем здесь только некоторые окончательные результаты. Отметим при этом, что в стержнях произвольного сечения, как и в стержнях круглого сечения, касательные напряжения при кручении направлены по касательной к контуру.  [c.219]

Методы расчета гибких брусьев, пластинок, оболочек и массивных тел рассматриваются в курсе Прикладная теория упругости , свободном от тех упрощающих гипотез, которые вводятся в курсе Сопротивление материалов . Методы теории упругости позволяют получить как точные решения задач, рассматри-вающихея в курсе Сопротивление материалов , так и решения более сложных задач, где нельзя высказать приемлемые упрощающие гипотезы.  [c.7]

Зарождение науки о сопротивлении материалов относится к XVII в. и связано с работами Галилея. Значительный вклад в развитие науки о сопротивлении материалов и теории упругости сделан выдающимися учеными Гуком, Бернулли, Сен-Вена-ном, Коши, Ламэ и др., которые сформулировали основные гипотезы и дали некоторые расчетные уравнения.  [c.7]

Сопротивление материалов имеет целью создать практичеоси приемлемые простые приемы расчета типичных, наиболее часто встречающихся элементов конструкций. При этом широко используются различные приближенные методы. Необходимость довести решение каждой практической задачи до некоторого числового результата заставляет в сопротивлении материалов прибегать в ряде случаев к упрощающим гипотезам — предположениям, которые оправдываются в дальнейшем путем сопоставления расчетных данных с экспериментом. При создании приближенных методов расчета в сопротивлении материалов часто используются также результаты точно10 анализа, произведенного методами математической теории упругости.  [c.10]

Для титановых, алюминиевых, магниевых сплавов графорасчетные методы Г. А. Николаева и Н. О. Окерблома не рекомендуется применять, так как остаточные напряжения в шве по экспериментальным данным получаются меньше предела текучести. Это несоответствие объясняется не только искривлением сечений и нарушением принятой гипотезы плоских сечений, но и в значительной степени недостаточно точным учетом изменения свойств материалов от температуры. Поэтому дальнейшее совершенствование графорасчетных методов осуществлялось в направлении более точного учета изменения свойств. При сварке реальных конструктивных элементов (в отличие от наплавки валика на кромку полосы и сварки встык узких пластин) существует, как правило, сложное напряженное состояние, для которого нельзя применять графорасчетные методы. В этом случае следует применять методы, основанные на использовании теории упругости и пластичности.  [c.417]


Сопротивление материалов вместе с такими смежными дисциплинами, как теории упругостй, пластичности, ползучести, строительная механика и другие занимается вопросами, связанными с поведением деформируемых твердых тел. В теории упругости, по сути, анализируются те же вопросы, что и в сопротивлении материалов, но задачи решаются в более точной постановке, свободной от упрощающих гипотез. Поэтому для их решения приходится использовать сложный математический аппарат, что в какой-то степени ограничивает возможность их применения в практических инженерных расчетах. Однако результаты более точного и глубокого анализа явлений, рассматриваемых в теориях упругости, пластичности и других дисциплинах, достаточно широко используются в сопротивлении материалов при создании приближенных методов расчета.  [c.176]

Основной предпосылкой в теории упругости, как и в сопротивлении материалов, является так называемая гипотеза о сплошности строения упругого тела. По этой гипотезе сплошное тело, т. е. тело, непрерывное до деформации, остается непрерывным и после деформации непрерывным остается любой объем тела и элементарный (микрообъем) в том числе. В связи с этим деформации и перемеицения точек тела считаются непрерывными функциями координат.  [c.5]

Результаты решений задач методами теории упругости позволяют, в частности, оценить применяемые в сопротивлении матерлалов гипотезы и установить границы их правомерности. Наиболее же существенным является то, что методами теории упругости можно решить ряд задач, имеющих важное практическое значение что недоступно для элементарных приемов сопротивления материалов. Это, например, задачи о концентрации напряжений, задачи кручения брусьев некруглого или переменного поперечных сечений, задачи определения напряжений в кривых брусьях при произвольном их нагружении, контактные задачи, имеющие исключительную. важность в машиностроении.  [c.4]

Основы теории упругости были разработаны почти одновременно Навье (1821), Коши (1822), Пуассоном (1829). Независимо друг от друга они получили по существу все основные уравнения этой теории. Особо выделялись работы Коши. В отличие от Навье и Пуассона, привлекавших гипотезу молекулярных сил, Коши, опираясь на метод, в котором используется статика твердого тела, ввел понятия деформации и нагфяжения, установил дифференциальные уравнения равновесия, граничные условия, зависимости между деформациями и перемещениями, а также соотношения между напряжениями и деформациями для изотропного тела, первоначально содержавшие две упругие постоянные. В эти же годы появились исследования М. В. Остроградского о распространении волн в упругом теле при возмущении в его малой области. На эти исследования ссылается в своих работах Пуассон, впервые (1830) доказавший существование в однородной изотропной среде двух типов волн (волны расширения и искажения).  [c.5]

Однако существенно больший интерес представляют такие задачи, для решения которых элементарные гипотезы не могут привести к цели. Типичный пример — задача о кручении призматического стержня. Если принять для кручения такую же гипотезу плоских сечений, которая была принята для изгиба, окажется, что верный результат получится только для того случая, когда сечение представляет собою круг или круговое кольцо для других форм сечения эта гипотеза приведет к очень грубой ошибке. Точно так же никакие элементарные нредно-ложения не позволяют найти напряжения в толстостенной трубе, подверженной действию внутреннего давления. Можно привести много примеров других элементов конструкций, для которых напряжения и деформации нельзя определить с помощью элементарных приемов, а нужно использовать уравнения теории упругости.  [c.266]

Это предположение аналогично гипотезе плоских сечений в теории изгиба балок. Точную теорию изгиба пластинок развили Мичелл (J. Н. Mi hell, Ргос. London Math. So . 31, 114 (1899)) и Ляв (А. Е. Л я в, Математическая теория упругости, ГТТИ, 1935).  [c.389]


Смотреть страницы где упоминается термин Гипотеза теории упругости : [c.416]    [c.2]    [c.2]   
Теория упругости и пластичности (2002) -- [ c.16 ]



ПОИСК



Гипотеза

Основные уравнения линейной теории упругости Основные гипотезы и принципы механики сплошной среды и линейной теории упругости

Прикладная теория упругости Изгиб тонких пластинок Основные понятия и гипотезы

Теория Гипотезы

Теория упругости

Упругость Теория — см Теория упругости



© 2025 Mash-xxl.info Реклама на сайте