Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Ирвина теория разрушения

Ионизационный метод рентгено- и гамма-дефектоскопии 1—318 3—139 Ионизирующих излучений единицы 3—490 Иоффе эффект 1—318 Ирвина теория разрушения 3—106 Иридий 1—318, 129  [c.503]

В теории разрушения Гриффитса — Ирвина считается, что трещина распространяется неустойчивым образом, когда скорость высвобождения энергии деформирования g достигает  [c.224]

В книге излагаются основные идеи и методы механики хрупкого разрушения, а также некоторые наиболее важные практические вопросы их приложений. В частности, изложены следующие вопросы теория Гриффитса — Ирвина, теория роста усталостных трещин, теория водородного охрупчивания, коррозия под напряжением, теория действия взрыва, адсорбционный эффект, теория огневого бурения, оптическое разрущение, масштабный эффект и т. д.  [c.2]


В обстоятельной статье Разрушение , опубликованной в шестом томе Физической энциклопедии , вышедшей в 1958 г., Ирвин [5], подробно осветил различные аспекты теории разрушения.  [c.387]

В теории Гриффитса — Ирвина предполагается, что трещина распространяется линейно. Существуют примеры невыполнения этого требования у реальных материалов, как изотропных [28], так и анизотропных [20]. Си [7] показал, что применение линейной упругой механики разрушения к однофазным материалам, в которых трещина распространяется нелинейно (это часто бывает при смешанных видах нагружения), может привести к большим ошибкам. Среди перечисленных далее теорий в некоторых из них рассматриваются только определенное направление роста трещины и напряженное состояние. Различные подходы механики разрушения можно классифицировать в соответствии с возможностью их прямого применения для решения задач анализа слоистых композитов с трещинами.  [c.235]

Ирвин ввел новое понятие — коэффициент интенсивности напряжений К. Поясним его сущность. Распределение напряжений по поперечному сечению растянутой полосы, ослабленному поперечной трещиной, подчиняется зависимости гиперболического типа. Согласно ей при уменьшении расстояния от точки материальной части поперечного сечения до вершины трещины нормальные напряжения в поперечном сечении увеличиваются и устремляются к бесконечности, если указанное выше расстояние устремляется к нулю. Асимптотами являются линия, параллельная ослабленному поперечному сечению полосы и перпендикулярная ей линия, проходящая через вершину трещины. Вследствие перехода материала у вершины трещины в пластическое состояние пик напряжений срезается. В системе осей, совмещенных с асимптотами, можно рассмотреть бесчисленное множество гипербол, каждая из которых характеризуется своим параметром, представляющим собой произведение переменных, входящих в гиперболическую зависимость. Этот параметр называют коэффициентом при особенности, Аналогично, коэффициент К представляет собой коэффициент при особенности в зависимости между нормальным напряжением и расстоянием точки ослабленного сечения, в которой оно действует, от вершины трещины. В теории Ирвина коэффициент К — величина, полностью характеризующая локальное деформирование и разрушение на контуре макротрещины. Величина К зависит от формы тела и от граничных условий и определяется из решения глобальной (т. е. для всего тела в целом) задачи. Ирвиным было получено условие предельного равновесия трещины в форме  [c.578]


Анализ напряженного состояния на основании линейной теории упругости показал, что напряжение у вершины трещины имеет особенность вида Цг, где г — расстояние от конца разреза. Коэффициент при этом члене, не зависящий от локальных координат при вершине трещины, называют коэффициентом интенсивности напряжений. В 1957 г. Ирвин сформулировал локальный (силовой) критерий разрушения трещина распространяется тогда, когда коэффициент интенсивности напряжений достигает некоторого значения, постоянного для данного материала и заданных условий нагружения. Соответствующее критическое значение коэффициента интенсивности напряжений характеризует сопротивление материала развитию в нем трещин и часто называется параметром вязкости разрушения. Вместе с тем, поскольку интенсивность поля напряжений и де-  [c.9]

Линейная механика разрушения, созданная Ирвином и Оро-ваном как обобщение теории Гриффитса на случай разрушения металла, дала импульс для проведения огромного числа работ  [c.16]

Линейная теория упругого разрушения возникла на основании развития представления о коэффициенте интенсивности напряжения и отношения Гриффитса — Ирвина [851  [c.476]

Для большей наглядности в настояш ей главе будем ориентироваться на двумерные задачи и рассматривать только хрупкое разрушение, т. е. считать среду идеально упругой вплоть до разрыва, основываясь на условии нормального отрыва. Такие ограничения способствуют более успешной математизации и упорядочению курса теории трещин. В то же время в критериях разрушения будем допускать большую свободу выбора, в частности, кроме основополагающего энергетического критерия Гриффитса, введем в рассмотрение силовые критерии Дж. Ирвина, Г. И. Баренблатта и В. В. Новожилова [33, 1, 17], а также деформационные критерии Леонова — Панасюка — Дагдейла [18, 30] и другие.  [c.136]

Ирвином были выполнены эксперименты, которые, как он надеялся, явятся подтверждением его теории быстрого разрушения, где напряжение разрушения бесконечного тела с центральной трещиной длиной 2а при плоском напряженном состоянии определяется выражением  [c.108]

Распространение трещины может быть определено по формулам механики разрушения, разработанным Ирвином. С их помощью может быть также определено сопротивление распространению трещины (хрупкому излому), т. е. энергия, необходимая для распространений трещины с единичной поверхностью вязкость разрушения Gio (Дж/см ) определяемый с помощью математической зависимости и значения величины Gi коэффициент критической интенсивности напряжения Ki (Н/мм ). Согласно теории Ирвина и его сотрудников два тела при распространении трещины ведут себя аналогично в том случае, если поля напряжения вокруг устьев трещин в них одинаковы.  [c.38]

Модель физически нелинейной среды, очевидно, более соответствует действительности, чем линейной. Есть сведения, что при переходе к неупругому телу особенность напряженного состояния в устье трещины подавляется, решение становится регулярным. В частности, для идеально пластического материала на основе простейшей схемы в зависимости от длины трещины, номинального напряжения и значения а, определяется поправка г (поправка Ирвина) на длину трещины (/ + г,). Решение теории уц ругости справедливо, если отступить от края трещины на расстояние 2/-,. При этом, однако, не устраняется противоречие, присущее всем моделям локального уровня, свойства которых не зависят от градиентов. В соответствии с этой независимостью геометрически подобные конструкции при подобных нагрузках имеют одинаковые (в относительных пространственных координатах) поля напряжений. Тем самым они должны быть и одинаково прочны, поскольку за разрушение считаются ответственными не внешние силы, а внутренние (напряжения). Понятие масштабного эффекта чуждо локальным моделям сплошной среды.  [c.240]


Представлена краткая история и обаор модифицированной механики раз рушения Гриффитса — Ирвина. Подчеркнуто значение коэффициента интенсивности напряжений и скорости высвобождения энергии деформирования в механике разрушения изотропных и анизотропных материалов. Кратко изложена эмпирическая трактовка процесса усталостного роста трещины в изотропной среде. Затем перечислены противоречия между основными предпосылками классической теории разрушения и особенностями протекания процесса разрушения в многофазных слоистых материалах. Тем самым показана необходимость некоторого смягчения исходных предпосылок теории разрушения, которое позволило бы создать практически применимые подходы для решения задач разрушения композитов. Очень кратко, вследствие неприменимости непосредственно к решению инженерных задач, изложены основные результаты, полученные при помощи методов микромеханики, позволяющих исследовать процессы взаимодействия между трещиной, волокном и связующим в бесконечной среде. Далее огшсаны основные концепции современных макромеханических подходов для описания процесса разрушения композитов. Отмечено, что все подходы, расчеты по которым находятся в соответствии с экспериментальными данными, исключают из рассмотрения нелинейную зону или зону разрушения у кончика трещины. Более сложные теории (с учетом критического объема, плотности энергии деформирования) наилучшим образом согласуются с экспериментами на однонаправленно армированных композитах, когда трещины распространяются параллельно волокнам. Эти теории также хорошо описывают нагружение слоистых композитов под углом к направлению армирования, когда преобладающее влияние на процесс разрушения оказывает растрескивание полимерной матрицы. Расчеты по двум приближенным теориям (гипотетической трещины и критического расстояния) и комбинированному методу (модель тонкой пластической зоны) сравниваются с данными, полученными при испытании слоистых композитов с симметричной схемой армирования [ 6°]s. Приведены данные о хорошем соответствии степенной аппроксимации, применяемой для описания скорости роста трещины, результатам испытаний на усталость слоистых композитов с концентраторами напряжений.  [c.221]

V. Модель тонкой пластической зоны. Концепция, альтернативная теории разрушения Гриффитса — Ирвина, была выдвинута несколько лет назад Г. И. Баренблаттом [39]. Чтобы избежать бесконечно больших напряжений в кончике трещины, он предложил, что в области перед трещиной, где полное разделение материала еще не наступило, действует поле когезионных сил (рис. 6.10, а). Считая, что напряжения в этом поле постоянны и равны напряжению текучести Oys, Даг-дейл [40] получил первое приближенное решение упругопластической задачи для трещины нормального разрыва (I рода). Дагдейл предполол<ил, что зона текучести перед кончиком трещины в плоскости трещины имеет вид узкой щели с пластической областью размером Ьо, которая увеличивается с размером трещины до предельного значения (рис. 6,10,6).  [c.240]

При написании главы автор попытался акцентировать внимание на линейной упругой механике разрушения и ограничениях при оценке с ее помощью предельных напряжений слоистых композитов с концентраторами напряжений. С этой целью приведен обзор модифицированной механики разрушения Гриффитса — Ирвина для изотропных и анизотропных материалов. Коротко изложено применение механики разрушения для предсказания роста трещины при усталостном нагружении. Перечислены условия, при которых схема армирования и особенности поведения композита вступают в противоречие с основными предпосылками указанной теории разрушения. Таким образом, показана необходимость смягчения некоторых теоретических ограничений, без которого методы механики разрушения нельзя применить для расчета предельных напряжений слоистых композитов с трещиной. Мик-ромеханический подход, использующий линейную упругую механику разрушения для оценки влияния параметрических  [c.244]

Для анализа процесса разрушения материалов были созданы различные теории прочности теория наибольших касательных деформаций, или приведенных напряжений Сен-Венана теория максимальных касательных напряжений, или критерий Кулона—Треска, который был использован для разработки условия пластичности Треска—Сен-Венана ряд энергетических теорий (Губер, Бельт-рами, Мотт) уточненная теория наибольших касательных напряжений (теория Мора) и последующие обобщения этой теории с учетом вида напряженного состояния теория трещипообразования (Гриффитс, А. Ф. Иоффе) дислокационные теории разрушения (Ирвин, Орован, Орлов В. С., Зинер, Стро, Коттрелл, Хонда и др.).  [c.15]

В 40-х годах возрождается интерес к проблеме хрупкого разрушения (особенно в США) в связи с многочисленными разрушениями конструкций типа сварных судов, газовых и жидкостных трубопроводов, нефтяных баков, газгольдеров, кабин и емкостей транспортных средств с перепадом давления, мостов, промышленных зданий и других сооружений. Неприятная особенность хрупкого разрушения, помимо его внезапности, состоит в том, что быстрое развитие трещин может происходить при напряжениях, значительно меньших, чем временное сопротивление материала, и поэтому кажущихся безопасными. Особый толчок для экспериментальных и теоретических работ [122, 125, 126] и последующего введения характеристик материала, оценивающих его сопротивление росту трещин, дало понятие квазихрупкого разрушения, аналитически выразившееся в том, что в теории Гриффитса к удельной поверхностной энергии добавляется энергия, затраченная на пластическую деформацию малых объемов в окрестности вновь образующейся единицы площади поверхности трещин [37, 96]. Отмеченное распространение Орованом и Ирвином теории Гриффитса на ква-зихрупкое разрушение существенно расширило область ее применения, поскольку в металлических материалах наблюдается именно квазихрупкое разрушение. Идеально хрупкое (упругое) разрушение, т. е. без возникновения пластических деформаций вплоть до разрушения, можно наблюдать на таких материалах, как кварц, силикатное стекло и т. п. Скорость трещины а за-критическом состоянии впервые была вычислена Моттом, а затем Робертсом и Уэллсом [2].  [c.9]


Если линейные размеры этих объемов малы сравнительно с длиной трещины, то поток упругой энергии по-прежиему можно вычислить, сообразуясь только с упругим решением, а затрату энергии на разрушение относить к работе пластической деформации. В этом состоит концепция квазихрупкого разрушения Е. О. Орована и Дж. Р. Ирвина, которая явилась крупным вкладом в механику разрушения и позволила перейти от идеального материала в схеме Гриффитса к реальным металлическим материалам. Благотворность этой концепции объясняется тем, что разрушение реальных конструкций практически всегда происходит квазихрупким образом, т. е. макрохрупкий излом содержит значительные остаточные деформации вблизи поверхности разрушения. Таким образом был открыт путь применения теории разрушения Гриффитса к решению инженерных проблем.  [c.89]

Также на две стадии можно разделить процесс разрушения при больших пластических деформациях. По мере развития деформации растут зародыши трещин, начинают все сильнее действовать эффекты концентрации напряжений. До некоторых пор трещина остается устойчивой и для ее дальнейшего развития необходимы дополнительные пластические деформации. Вторая стадия начинается с некоторого момента, когда трещина достигнет критического размера и потеряет устойчивость. Вопросы самопроизвольного развития трещин рассматривались Гриффитцом, Орованом, Ирвином, Баренблаттом, Качановым, Друккером и др. После достижения критического размера достаточно небольшой пластической деформации, чтобы трещина резко увеличила свои размеры. Несколько трещин объединяются, образуя поверхность разрушения. Степени деформации элементарного объема в начале и в конце второй стадии отличаются незначительно и теория разрушения, на наш взгляд, может рассматривать лишь первую стадию.  [c.34]

Однако при этом не учитывается взаимное влияние поверхностей трещины. В случае изгиба в одной из сторон листа трещина распространяется быстрее, чем в другой, это также не учитывается соотношением (1.105). Авторы отмечают, что введение зависимости (1.105) представляет шаг к более общему применению концепции Гриффита-Ирвина, однако всякое практическое исследование должно сопровождаться подтверждением принятых допущений. В заключение они подчеркивают, что основной вклад их работы состоит в том, что указан путь к более общему применению теории разрушения Г риффита-Ирвина.  [c.405]

Таким образом, применение вариационного принципа теории трещин может расширить постановку и возможности получения решений различных задач механики разрушения, а приведенные примеры дают физически более естественные результаты, чем в случае применения концепции Гриффитса — Орована — Ирвина.  [c.148]

Теория Гриффитса в оригинальной форме удобна для хрупких тел. В случае пластичных металлов размер готовых трещин, удовлетворяющих критерию Гриффитса (5.2), должен достигать нескольких миллиметров, что на практике редко встречается. А. В. Степанов [377] предположил, что такие трещины в металлах зарождаются в процессе пластической деформации, предшествующей разрушению Оро-ван [378] и Ирвин [379] модифицировали теорию Гриффитса для случая разрушения более пластичных материалов и показали, что соотношение (5.2) будет справедливо, если в нем параметр поверхностной энергии Уо заменить на параметр эффективной поверхностной энергии Уэф, который учитывает пластическую деформацию, предшествующую разрушению. В последующих работах [380] было показано, что эффективная поверхностная энергия является температурнозависимой характеристикой, в интервале температур хрупко-пластичного перехода изменяется на 2—3 порядка и имеет единую с пределом текучести термоактивационную природу.  [c.188]

В это время Орован [3] и Ирвин [4] независимо обнаружили, что хрупкое разрушение высокопрочных металлов сопровождается существенными пластическими деформациями в области, примыкающей к разрушенным поверхностям. Было также показано, что если энергию, рассеянную при образовании этой пластической области, ввести в теорию Гриффитса в том же виде, что и освобождающуюся упругую энергию (т. е, как энергию на единицу поверхности трещины), то модифицированная теория Гриффитса довольно точно предсказывает неустойчивый рост трещины для ряда высокопрочных конструкционных сплавов.  [c.222]

Использование концепции коэффициента интенсивности позволило получить решения целого ряда задач о телах с трещинами. Многие из этих решений приведены в справочниках [8, 9]. Теория Ирвина была также распространена и на анизотропные среды [10—12]. Включение эффектов пластичности в анализ разрушения [13, 14] привело к созданию довольно сложных и полезных теорий для однородных ква-зихрупких материалов. В 1972 г. общество ASTM официально приняло определения и методы измерения вязкости разрушения [15].  [c.223]

Анализ интенсивностей напряжений (по Ирвину Ki = = EGIn) показывает, что разрушение наступит в момент достижения критического распределения напряжений, которое устанавливается уравнениями линейной теории упругости. Введенное Ирвином понятие критического коэффициента интенсивности напряжений (Kid Кпс Km ) является в настоящее время одним из критериев сопротивления металлических материалов хрупкому разрушению. В зависимости от формы и размеров тела и трещины, а также от способа нагружения тела этот коэффициент имеет различные значения. При этом рещение целого ряда краевых задач, которые представляют собой самостоятельную область теории упругости, сводится к определению коэффициента интенсивности напряжений.  [c.25]

В работах Гриффитса материал принимался идеально хрупким (абсолютно упругим и подчиняющимся закону Гука вплоть до разрушения). Позднее Ирвин i) и Орован расширили область применимости теории трещин, введя понятие квазихрупкого механизма разрушения, согласно которому в теле возникают пластические деформации, но они сосредоточиваются в очень тонком слое вблизи контура трещины у ее вершины. Ниже в основном коснемся идеально хрупкого поведения материала и лишь в конце параграфа поясним подход к решению проблемы в случае квазихрупкого материала. Так как ширина трещины лредпола-гается намного меньше двух других ее размеров, трещину можно считать поверхностью разрыва сплошности материала, на которой одна нормальная (чаще всего) или все три составляющие перемещения претерпевают разрыв.  [c.575]

Зависимости о от К, данные которых были представлены вначале, являются наиболее удачным выражением кинетических особенностей растрескивания и зависимости растрескивания от напряжения. Использование коэффициента интенсивности напряжения, несомненно, удовлетворяет тех, кто рассматривает линейную упругую механику разрушения в качестве основного средства решений всех проблем разрушения, но не удовлетворяет тех, кто считает, что такие зависимости не дают достаточной информации о КР. Вероятно, истина находится между этими двумя крайностями. Достижение механики разрушения (для металлических материалов) базируется на теории Гриффитса [199] разрушения упругих твердых тел. Согласно анализу Орована — Ирвина для металлических материалов [200, 201] в процессе разрушения совершается работа пластической деформации дополнительно к работе упругой деформации, необходимой для образования новых поверхностей. Таким образом, уравнение Гриффитса изменяется и для плосконапряженного состояния принимает вид От = = (2 E -fs+yp)In ) h.  [c.389]


Определение теоретических значений предела прочности с помощью соотношений энергетического баланса между энергией деформации, высвобождаемой при растрескивании, с одной стороны, и энергией, требуемой для образования новой поверхности,— с другой, нашло широкое распространение. Ирвин и Орован независимо в 1948 г. пришли к выводу, что при исследовании металлов теория Гриффитса нуждается в модификации, позволяющей учесть внутреннюю вязкость. Даже в тех случаях, когда разрушение можно считать хрупким, по их мнению, в области, граничащей с поверхностью разрушения, всегда происходит пластическое течение. Они предположили, что к поверхностной энергии Wa должна добавляться необратимо рассеиваемая энергия при пластическом течении Wp (на единицу площади). В соответствии с этим предположением выражение (3.11) должно иметь вид  [c.47]

Результаты исследований Гриффитса, Ирвина и Орована значительно способствовали установлению соответствия между теорией и экспериментом и пониманию поведения металлов под нагрузкой. Итогом этих исследований явилась разработка двух основных используемых в технике теорий, а именно теории дислокаций и механики разрушения. Были предложены также и другие теории, использующие понятия дефектов, вакансий и блочных дефектов. Однако ни одна из них не могла полностью объяснить несоответствия между теоретическими и экспериментальными значениями прочности без многих сомнительных предположений, пока не была создана теория дислокаций.  [c.47]

Благодаря развитию теории дислокаций достигнуты заметные успехи в объяснении механизмов деформирования и разрушения технических материалов на атомистическом уровне. Однако эта теория не дает в распоряжение инженеров средств, позволяющих производить количественные оценки критических условий нагружения, размеров и форм конструкции, а также свойств материалов. В связи с этим наряду с проведением исследований на микроскопическом уровне по построению и развитию теории дислокаций проводились исследования на макроскопическом уровне с целью создания моделей разрушения элементов машин и конструкций, т. е. в области, известной ныне под названием механики разрушения. Начиная с появления работ Гриффитса, Орована и Ирвина, исследования в области механики разрушения в значительной степени были стимулированы разрушениями 1289 (из них 233 случая  [c.60]

Гриффитса Ирвина — Оровано критерий 47 Гриффитса теория 45, 46 Губера — Мизеса — Генки гипотеза см Формоизменения удельной энергии, ги-потеза разрушения Гудмана диаграмма см. Смита диаграмма  [c.615]

Ирвин [24] и Орован [25] усовершенствовали теорию Гриффитса путем введения в нее скоростидиссипации энергии на пластических деформациях (кратко, пластической диссипации) в области пластического течения в окрестности вершины трещины так, что эта теория стала применимой к исследованию разрушения. металлов. Энергия диссипации на пластических де-  [c.13]

Таким образом, необходимым условием начала разрушения в теории Гриффитса является упомянутое выше условие равенства (баланса) энергий, модифицированное в работах Ирвина и Орована (см. [26]). Поскольку данная теория использует глобальное условие энергетического баланса в разрушающемся упругом теле, то очевидно, что попытка предсказать типы возможного разрушения в рамках данного подхода может натолкнуться на весьма серьезные трудности, в частности так произойдет в задаче о росте малых дефектов в теле большой протяженности. Для решения этой проблемы Ирвин [10] предложил рассматривать вместо величины скорости подвода полной энергии локальную скорость высвобождения энергии в окрестности вершины движущейся трещины.  [c.15]

Скорость диссипации энергии на пластических деформациях, являющуюся в соответствии с теорией Гриффитса — Ирвина — Орована константой материала, можно теперь заменить другой материальной константой, равной критической скорости высвобождения энергии деформаций S в момент страгивания трещины. Поскольку коэффициент интенсивности напряжений Ki выражается через величину I , по формуле (10), то теорию Гриффитса — Ирвина — Орована можно переформулировать с использованием понятия коэффициента интенсивности напряжений К, который, таким образом, сравнивается с характеристикой материала К с по страгиванию трещины. Данное критическое значение коэффициента интенсивности напряжений Кю называют вязкостью разрущения размерность вязкости разрушения равна [напряжение X (длина) /2].  [c.21]

Изобретение Г-интегрирования позволяет любому студенту легко и единообразно выводить подобные основополагающие формулы, связывающие силовые и энергетические характеристики сингулярности любого физического поля с интенсивностью этой сингулярности, описываемой некоторым множителем в сингулярном решении. Таким путем из соответствующих инвариантных Г-интегралов можно получить (соответствующие вычисления были проведены в [1 —12]) все известные физические законы о классических взаимодействиях закон Ньютона взаимодействия двух точечных масс — в теории тяготения законы Кулона, Био — Савара, Фарадея — в теории электромагнетизма формулу Жуковского — Чаплыгина и формулы для сил, действующих на источники, впхревые линии и кольца, — в гидродинамике идеальной жидкости формулу Стокса — в гидродинамике вязкой жидкости формулу Пича — Келера — в теории дислокаций формулу Ирвина — в линейной механике разрушения формулу Эшелби — в теории точечных включений и др. Таким же путем для новых типов сингулярностей, или новых физических полей, или новых комбинаций известных физических полей можно получать новые закономерности.  [c.360]

В 40-х годах нашего столетия интерес к теории Гриффита возродился при анализе серии катастрофических хрупких разрушений стальных судовых конструкций, и его идеи были существенно развиты другими исследователями, в первую очередь Орованом [2] и Ирвином [3]. В идеально хрупких телах термодинамическая поверхностная энергия соответствует энергии, затрачиваемой на образование единицы поверхности при росте трещины. Однако в реальных материалах, за редким исключением, при образовании новой поверхности при росте трещины энергия может поглощать-  [c.53]

Как мы уже говорили, решение данной задачи для малой окрестности любой точки гладкого фронта (рис. 42) можно считать не зависящим от координаты г, отсчитываемой вдоль фронта трещины (рис. 46). Самый общий случай полей деформаций и напряжений у кончина трещины могкио получить путем взаимного наложения напряжений следующих частных видов плоской и антнплоской деформаций (рис. 47). Вид 7 связан с отрывным смещением, при котором поверхности трещины прямо расходятся одна от другой во взаимно противоположных направлениях (так происходит при забивании клина). Вид 77 соответствует перемещениям, при которых поверхности трещины скользят друг по другу (так, например, снимает стружку резец токарного станка). Вид 777 связан с антиплоской деформацией (разрезание ножницами), при которой одна поверхность скользит по другой параллельно фронту трещины. Решения этих задач, очень сложные в математическом отношении, были получены в пятидесятые годы. Оказалось, что для любых задач теорий упругости поля напряжений и смещений вблизи вершины трещины имеют почти одинаковую структуру. Первыми поняли это английские ученые Дж. Ирвин и М. Вильямс, хотя строгое доказательство общности формул было дано позже. Сейчас мы приведем все формулы, описывающие распределение напряжений и смещений, прпчем многоточия в них ставятся вместо слагаемых, которые пренебрежимо малы по сравнению с выписанными. Мы приводим эти довольно громоздкие выражения совсем ие для того, чтобы лишний раз вызвать трепет перед механикой разрушения. Наша задача — обратить впимаипе на некоторые их общие свойства и постараться сделать для себя поучительные выводы. Все  [c.76]

Теория вязкости разрушения, изложенная в предыдущей главе, логически устанавливает вид экспериментов для измерения критических значений высвобождаемой энергии деформации или коэффициента интенсивности напряжений. Стандартные образцы с предварительно нанесенной трещиной нагружают до разрушения. Если разрушение макроскопически хрупко, то, исходя из нагрузок, рассчитывают вязкость разрушения с помощью стандартных таблиц податливости образцов. Эта методика включена в спецификацию Проекта Британского Стандарта № 3, метод АОИМ Е399-70 (см. гл. V, раздел 9 и последующие). Чтобы представить, какие измерения проводятся на практике и почему на размеры образцов накладываются определенные ограничения для получения достоверных результатов, целесообразно рассмотреть развитие испытаний на вязкость разрушения, начиная с первых экспериментов, выполненных Ирвином.  [c.108]


Смотреть страницы где упоминается термин Ирвина теория разрушения : [c.29]    [c.14]    [c.10]    [c.23]    [c.138]    [c.144]    [c.32]    [c.106]    [c.367]    [c.240]    [c.578]   
Конструкционные материалы Энциклопедия (1965) -- [ c.3 , c.106 ]



ПОИСК



Ирвин

Ирвина теория



© 2025 Mash-xxl.info Реклама на сайте