Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Сплошность материала

Гипотеза о сплошности материала. Предполагается, что материал сплошь заполняет форму тела. Атомистическая теория дискретного строения вещества во внимание не принимается.  [c.12]

В соответствии с гипотезой о сплошности материала следует считать, что каждая частица тела в сколь-угодно малой окрестности имеет бесконечное множество других частиц, окружающих ее по всем направлениям. Расположенная в данной точке частица по-разному взаимодействует с каждой из этих соседних частиц. Поэтому в одной и той же точке по разным направлениям напряжения будут различными и только в очень редких случаях они одинаковы во всех направлениях.  [c.159]


В зависимости от степени резкости нарушения призматической формы стержня или сплошности материала будет та или иная степень концентрации напряжений, т. е. местного повышения напряжений.  [c.265]

Основной гипотезой, на которой базируется сопротивление материалов, является гипотеза непрерывности (сплошности) материала твердого тела, согласно которой тело рассматривается как сплошная среда. Предполагаем также, что твердое тело изотропно и однородно, т. е. механические свойства во всех направлениях одинаковы и не меняются при переходе от одной точки тела к другой.  [c.173]

От предельного изгибающего момента отвечающего развитому пластическому течению и неспособности соединения при этом воспринимать дальнейшую нагрузку, следует отличать предельный разрушающий момент М , при котором происходит нарушение сплошности материала (образование микротрещин и т. д.) вследствие исчерпания ресурса пластичности материала прослойки / р. Так как ресурс пластичности является функцией показателя жесткости напряженного состояния П ( П = а /Т—отношение шаровой части тензора напряжений к девиаторной /11 /). с повышением уровня нормальных напряжений растяжения в прослойке повышается показатель жесткости напряженного состояния и падает ресурс пластичности мягкого металла Лр. Уровень нормальных напряжений в прослойке возрастает с уменьшением ее относительной толщины ае, следовательно и предельный разрушающий момент Мр будет зависеть от геометрических параметров мягкой прослойки. Основные соотношения для его определения приведены в /12/.  [c.27]

Вихретоковые методы основаны на взаимодействии внешнего электромагнитного поля с электромагнитным полем вихревых токов, которые наводятся возбуждающей катушкой в электропроводящем контролируемом объекте. Иначе данные методы назьшаются электромагнитными методами контроля. При контроле используется зависимость амплитуды, фазы, переходных характеристик и спектра частот токов, возбуждаемых в изделии, от сплошности материала изделия, его физико-механических свойств, расстояния до датчика, скорости перемещения датчика и т. д. Метод контроля используют для обнаружения непроваров, трещин, несплавлений в изделиях из алюминиевых, сплавов, низколегированных сталей, титановых сплавов и других немагнитных и ма1 нитных электропроводных материалов.  [c.198]


Влияние концентрации напряжений. Концентрацией напряжений называется повышение напряжений в местах изменений формы или нарушений сплошности материала. Напряжения, вычисленные по формулам сопротивления материалов без учета концентрации, называются номинальными напряжениями.  [c.280]

На фронте волны напряжений при переходе из одной области возмущений в другую перемещения частиц тела изменяются непрерывно (в противном случае происходит нарушение сплошности материала), напряжения терпят разрыв, величина которого определяется значениями интенсивностей возмущений в соприкасающихся областях.  [c.9]

При переходе из области возмущений прямой волны в область возмущений отраженной сплошность материала должна сохраняться. Условие сохранения сплошности эквивалентно выполнению на фронте отраженной волны условия Ахи = 0, следовательно, граничное условие (1.5.3 ) принимает вид  [c.71]

Эксперименты по упрочнению кристаллов, а также многочисленные случаи преждевременного разрушения конструкций и сооружений при напряжениях, значительно меньших расчетных, показали недостаточность развитых представлений о прочности как о постоянной материала. Такое значительное различие между теоретической и реальной прочностью материалов на современном уровне объясняется а) значительными отклонениями от строгого, регулярного расположения атомов в кристаллической решетке материала, т. е. дефектностью структуры материала б) технологическими нарушениями сплошности материала — трещинами.  [c.328]

Гипотеза сплошности материала, являющаяся центральной в современном сопротивлении материалов, теснейшим образом связана с так называемым феноменологическим подходом к анализу поведения инженерных объектов при внешнем воздействии. Суть его состоит в том, что как свойства материалов, так и поведение сооружений исследуются в форме констатации экспериментально установленных фактов с последующим построением на их основе соответствующих расчетных методик. При этом тонкие подробности физических процессов на кристаллическом, а тем более на молекулярном уровне остаются в большинстве случаев без внимания. В особых обстоятельствах упомянутые подробности учитываются путем введения тех или иных поправок в гипотезу сплошности.  [c.10]

В качестве виртуального перемещения в случае упругого тела можно принять любое малое перемещение, совместимое с условиями сплошности материала и с условиями, наложенными на перемещения точек поверхности тела, если такие условия заданы. Если, например, задано условие, что некоторая часть поверхности тела (скажем, заделанный конец балки) неподвижна или имеет заданные перемещения, то виртуальное перемещение для такой части поверхности равно нулю.  [c.260]

На основании допущения о сплошности материала можно считать, что внутренние силы непрерывно распределены по всему сечению. Усилие, приходящееся на единицу площади в данной точке рассматриваемого сечения, называется напряжением. Напряжения являются мерой интенсивности внутренних сил и измеряются в единицах силы, отнесенной к единице площади, например, Н/м = Па (паскаль).  [c.7]

Говоря о качественной оценке разрушения, необходимо представить себе ситуацию, в которой вся совокупность внешних факторов силового, температурно-скоростного и агрессивного воздействия среды реализуется в прогрессирующем во времени нарушении сплошности материала. Каждый фактор вносит свой вклад в энергетические затраты, связанные с подрастанием трещины в цикле нагружения. Вместе с тем поглощение энергии материалом происходит без разделения вида источников, которые ее генерировали. Подрастание трещины реализуется в тот момент, когда поглощенная материалом энергия не может быть релаксирована иным способом, как только в связи с формированием свободной поверхности, а следовательно, подрастанием трещины. Прежде чем характеризовать реакцию материала на реализованные в условиях эксплуатации затраты энергии на прогрессирующее развитие разрушения необходимо охарактеризовать общее представление о видах разрушения детали с учетом свойств материала и его структурного состояния.  [c.80]


Соотношения (2.10) и (2.11) свидетельствуют о необходимости введения корректировок в определяемую вязкость разрушения не только на геометрию образца, но и на геометрию фронта трещины. Ее длина определяется пластическими свойствами материала и различиями в напряженном состоянии материала вдоль фронта трещины. Применительно к плоскому элементу конструкции имеет место зависимость вносимой энергии в образец при его одноосном растяжении от ширины пластины (2.4). Это связано с тем, что по мере увеличения ширины пластины появляется возможность немонотонного нарушения сплошности материала в результате релаксации напряжений после страгивания трещины в условиях вязкого поведения материала. Трещина производит скачкообразное перемещение, после чего происходит релаксация напряжений в вершине переместившейся трещины и она останавливается. Для ее дальнейшего продвижения нужно повысить уровень напряжения, что сопровождается следующим скачком трещины. После каскада скачков трещины происходит окончательное разрушение пластины.  [c.108]

Зависимость скорости роста усталостной трещины от коэффициента интенсивности напряжения возникает после достижения ею приращением в цикле нагружения величины, близкой нескольким параметрам кристаллической решетки (рис. 3.4). Прирост трещины, соответствующий нарушению сплошности материала в цикле нагружения, не может быть менее одного межатомного расстояния. Поэтому во многих случаях на кинетической кривой выделяют величину прироста трещины на одно межатомное расстояние в области ее начального (припорогового) роста (см. рис. 3.4). На поверхности образца в эксперименте могут быть зафиксированы скорости на несколько порядков меньше, чем прирост трещины на величину межатомного расстояния за цикл нагружения. Причины такого расхождения результатов экспериментов с физикой поведения материала будут обсуждены далее.  [c.132]

Рассмотренная закономерность формирования зон пластической деформации предполагает существование нескольких, последовательно сменяющих друг друга процессов разрушения материала. Каждый механизм разрушения доминирует до тех пор, пока нарушение сплошности материала в цикле нагружения последовательно ограничено сначала циклической, а далее периферической зонами. Первый этап определяется размером зоны  [c.141]

Устойчивое формирование усталостных бороздок по всему фронту трещины происходит после достижения шага около 45 нм (4,5-10 м или 0,045 мкм), что характерно для алюминиевых сплавов. В сталях могут быть обнаружены бороздки с шагом около 30 нм, в титановых сплавах устойчивое формирование бороздок имеет место после достижения их шага около 25 нм. Все указанные величины обнаружены с помощью методов высокоразрешающей просвечивающей и растровой электронной микроскопии. Они соответствуют нижней границе размеров мезоскопического масштабного уровня применительно к размерам субструктурных элементов и характеризуют определенный процесс нарушения сплошности материала в цикле приложения нагрузки и с этой точки зрения характеризуются определенным профилем или геометрией усталостной бороздки. Поскольку формирование усталостных бороздок происходит под действием двух полуциклов нагружения-растяжения (восходящая ветвь нагрузки) и снижения нагрузки, то форма профиля усталостной бороздки в значительной степени зависит от того, какой процесс доминирует в каждом из полуциклов [123, 132-134].  [c.164]

Принципиальное различие между расчетами по максимальным и предельным нагрузкам применительно к композиционным материалам связано с нарушением сплошности материала в процессе деформирования. Согласно основной концепции расчета по максимальным нагрузкам допустимые напряжения не должны вызывать нарушения сплошности материала и выходить за пределы линейного участка диаграммы деформирования. Описание поверхности разрушения с позиций расчета по предельным нагрузкам предусматривает допустимость нарушения сплошности материала, не приводящего к его разрушению. Например, разрушение связующего при поперечном растяжении или сжатии одного или нескольких слоев не вызывает разрушения, если структура  [c.90]

Известно несколько способов учета нарушения сплошности отдельных слоев в процессе деформирования материала. Цай [17] не учитывал механического и температурного взаимодействия между монолитными слоями и слоями с нарушенной сплошностью, т. е. принимал, что жесткость последних равна нулю . Если при нарушении сплошности материал не разрушается, то действующие нагрузки воспринимаются монолитными слоями. Для материала в целом определяется новая матрица жесткости, и напряжения в слоях соответствующим образом перераспределяются. Диаграмма деформирования при этом имеет разрывы. Процесс повторяется до разрушения всех слоев. Предположение отсутствия связи между слоями определяется свойствами рассматриваемого материала. Розен и Доу [15] использовали аналогичный подход, однако принимали, что напряжения, достигающие предельных значений, далее не изменяются, а другие продолжают возрастать. Оба метода приводят к результатам, хорошо согласующимся с экспериментальными.  [c.91]

Построение предельных поверхностей путем последовательного анализа нарушения сплошности материала до его разрушения в большей степени отвечает современным требованиям, чем расчет по максимально допустимым нагрузкам.  [c.92]

В дефектоскопии к дефектам относятся различные нарушения сплошности материала, ослабляющие его прочность и недопустимые по техническим условиям (ТУ) на качество. Дефектами могут считаться как микроскопические трещины размером в доли микрона, так и макроскопические размером 0,1 мм и более. Понятие дефект — относительно, например, одинаковое нарушение сплошности для одного изделия можно квалифицировать как допустимое, а для другого (более ответственного) как недопустимое.  [c.4]


Установлено, что повреждаемость материала вызывает снижение характеристик кратковременной и длительной прочности, ползучести и многоцикловой усталости, а также изменение многих физических характеристик, которые в ряде случаев становятся мерой количественной оценки степени повреждаемости материала [49]. Структурные изменения, протекающие непрерывно в процессе нагружения, формируют повреждения, которые вызывают видимые нарушения сплошности материала (макротрещины и др.), характеризуемые как повреждения конструктивного элемента, вид которых, определяется характером действующей нагрузки (усталостной, статической, длительной статической).  [c.14]

Принципиальная схема контроля сплошности материала корпусов деталей приведена на рис. 54.  [c.138]

Возрастание прочности, наблюдаемое при повышении уровня перегрузок до известного предела, можно объяснить прогрессивным увеличением числа микрообъемов, подвергающихся пластической деформации, и увеличением интенсивности дисперсионного, упрочнения. На определенной стадии процесс упрочнения прекращается. Это наступает при таком уровне и частоте перемен напряжения, когда в материале возникают необратимые внутри- и межкристаллитньхе повреждения, нарушающие сплошность материала.  [c.309]

Концентрация напряо)сенш1. Концентрацией напряжений называется повышение напряжений в местах изменений формы или нарушений сплошности материала.  [c.333]

Усталостные изломы представляют собой непосредственный результат нарушения сплошности материала и являются своеобразной фотографией истории разрушения. При усталостном разрушении на изломе можно обнаружить две зоны одну мелкозернистую, принимающую даже фарфоровидное строение, а иногда и блестящий щлифованый вид, и другую — с волокнистым строением.  [c.338]

Современная физика материалов считает объект своего исследования дискретным телом на двух уровнях поликристаллическом и молекулярном. Однако полученные в подобных предположениях зависимости оказались настолько сложны и громоздки, что пока не полошили широкого распространения в сопротивлении материалов. В этих обстоятельствах оказалась плодотворной гипотеза о сплошности материала, согласно которой тело рассматривается как некий материальный континуум или среда, непрерывно заполняющая данный объем и наделенная указанными выше экспериментально найденными физико-механическими свойствами. Практическая реализация такого подхода подтверждает его эффективность, поскольку именно на этой основе спроектированы, построены и успешно эксплуатируются все современные инженерные объекты. Одним из сущест-венв[ейших преимуш еств является возможность ввести в рассмотрение бесконечно малые величины (например длины, площади, объемы) и использовать тем самым мощный и хорошо развитый аппарат дифференциального и интегрального исчисления.  [c.10]

Рассмотрим произвольное тело, нагруженное самоуравновешен-ной системой сил. В интересующем нас месте мысленно рассечем его некоторой плоскостью на две части — А и В (рис. 39, а). При этом само сечение теперь будет иметь две стороны одну, принадлежащую части А тела (левую), и вторую, принадлежащую части В (правую). В каждой точке обеих сторон сечения будут действовать силы взаимодействия (рис. 39, б). Исходя из введенной гипотезы о сплошности материала следует считать, что внутренние силы действуют во всех точках проведенного сечения и, следовательно, представляют собой распределенную нагрузку. В зависимости от формы тела и характера внешних нагрузок интенсивность внутренних сил в различных точках может быть различна.  [c.45]

Необходимым условием выявления дефектов нарушения сплошности материала типа полостных капиллярным контролем, имеющих выход на поверхность объекта и глубину распространения, значительно превышающую ширину их раскрытия, является относительная их незагрязненность посторонними веществами.  [c.146]

Обусловленность начала ротационной неустойчивости связана с возрастающим масштабным уровнем локализации деформации и разрушения материала и достижением некоторохг величины прироста трещины в цикле нагружения. С этого момента ротационная неустойчивость, являясь аккомодационным актом накопления повреждений без нарушения сплошности материала, становится определяющим процессом пластической деформации у кончика трещины. Возникает возможность поглощать больше энергии у вершины трещины без значительного увеличения размера зоны пластической деформации, что снижает темп подрастания трещины в цикле нагружения.  [c.160]

Непрерывному процессу распространения усталостной трещины соответствует развитие разрушения с формированием определенных параметров рельефа излома в виде усталостных бороздок, псевдобороздок и иных параметров рельефа излома. Все они в совокупности и каждый параметр отдельно отражают единичные акты дискретного нарушения сплошности материала. Не все параметры рельефа могут быть использованы в качестве количественной характеристики величины прироста трещины. Однако каскад событий в процессе распространения трещины таков, что в каждом цикле нагружения происходит дискретное подрастание трещины. Поэтому в среднем монотонное (непрерывное) развитие трещины на масштабном макроскопическом уровне его рассмотрения связано с дискретным, поцикловым подрастанием трещины на всех масштабных уровнях.  [c.202]

Величины шага усталостных бороздок 612 и 8,, формируемого в изломе при достижении коэффициентов интенсивности напряжения соответственно (Kg)i2 И (Kg)is, отвечают нижней и верхней границам линейной зависимости шага от длины трещины. Нижняя граница для шага усталостных бороздок определяет дискретный переход в развитии трещины от микроскопического к мезоскопическому масштабному уровню. Верхняя граница отвечает нарушению принципа однозначного соответствия, как было подчеркнуто в предыдущих разделах, когда на поверхности излома нарастают элементы рельефа с выраженными признаками микропестабильного нарушения сплошности материала и ветвления трещины. Это переход от мезо-уровня I к микроуровню П. Верхняя граница легко определяется по кинетическим кривым и из статистической оценки наиболее часто наблюдаемого размера элементов дислокационных структур, как это было рассмотрено в параграфе 4.1. В том числе указанная граница определена для алюминиевых сплавов на основе анализа двумерных Фурье-спек-тров параметров рельефа излома в виде усталостных бороздок. Из всех оценок следует, что для алюминиевых сплавов 5. = 2,14-10 м.  [c.219]

В главе 10 представлен достаточно полный обзор исследований, посвященных анализу напряженного состояния в окрестности линий возмущения, краевых зон и узлов соединения. В качестве источников возмущения рассмотрены макро- и микро-структурные нарушения сплошности материала. Установлено, что краевые эффекты зависят от порядка чередования слоев и являются существенными, если расстояние от свободного края не превышает толщины пакета. Исследована эффективность клеевых соединений и показано, что нелинейный анализ позволяет достаточно точно предсказать прочность таких соединений. Представлен обзор экспериментальных результатов, определяющих поведение типовых механических соединений. Поскольку особенности напряженйого состояния в окрестности линий возмущения и краевых зон, с одной стороны, и узлов соединений — с другой, отчасти аналогичны, объединение разделов, посвященных этим вопросам, в одной главе представляется естественным.  [c.12]

Критерии разрушения разрабатывают для того, чтобы иметь возможность описать прочность материала при сложном напряженном состоянии. К двум наиболее важным характеристикам критерия относятся его свойство достаточно точно описывать экспериментальные результаты и простота использования. Все современные инженерные критерии являются феноменологическими. Микромеханические явления, возникающие в процессе разрушения, рассматриваются постольку, поскольку они проявляются в макромеханическом поведении материала. Единого математического подхода к описанию поверхности разрушения не существует, поэтому в литературе можно найти множество применяемых критериев. Здесь обсуждаются только некоторые из них, наиболее распространенные. Выбор группы критериев или жакого-то конкретного критерия определяется достаточно общими и в известной степени субъективными соображениями. Он зависит от имеющегося объема экспериментальных данных, описывающих характеристики, материала выбранной концепции расчета (по предельным или максимальным расчетным нагрузкам), допустимого уровня нарушения сплошности материала при нагружении и от склонности к тому или иному подходу при анализе прочности конструкции.  [c.79]


Принципиальную основу критериев прочности при расчете по максимальным нагрузкам, таких как В-критерии, изложенные в руководстве [1 ], составляет условие недопустимости повреждения или нарушения сплошности материала при расчетных напряжениях. Выбор соотношения между максимально допустимыми и предельными напряжениями для однонаправленных материалов определяется рядом факторов, обусловленных практикой расчета и проектирования. Прочность слоистого материала оценивается в результате применения критерия прочности последовательно ко всем слоям материала.  [c.86]

Равенства (7) — (10) выражают напряжения (деформации) в главных осях каждого слоя через результирующее усилие М, воздействующее на слоистый материал. С учетом этих напряжений в критерии разрушения можно оценить прочность каждого слоя материала и определить запасы прочности, соответствующие принятому критерию. Если критерий разрушения ч )ормулируется через максимально допустимые напряжения (деформации), то отрицательный запас прочности некоторого слоя свидетельствует о нарушении сплошности материала и не обязательно соответствует его разрушению. Разрушение определяется предельными напряжениями для слоя. Нарушение сплошности материала связано с образованием трещин в связующем при растяжении слоя в поперечном направлении и приводит к изменению его термомеханических характеристик.  [c.86]

В условиях многочисленных ударов абразивных частиц изнашивание может происходить по следующим схемам 1) наклепанный металл периодически отделяется в соответствии с расположением растягивающих напряжений 2) толщина отделяемого слоя уменьшается, если нарушение сплошности материала вызвано действием наибольших касательных напряжений 3) отделяемые частицы металла становятся весьма малыми и удаляются с поверхности наклепанного слоя вследствие циклического сжагия и растяжения [31].  [c.7]


Смотреть страницы где упоминается термин Сплошность материала : [c.37]    [c.751]    [c.244]    [c.149]    [c.150]    [c.221]    [c.236]    [c.78]    [c.186]   
Машиностроение Энциклопедия Т I-3 Кн 2 (1995) -- [ c.17 ]



ПОИСК



Гипотеза наибольших напряжений непрерывности (сплошности) материала

Гипотеза наибольших непрерывности (сплошности) материала

Контроль сплошности материалов, деталей и изделий

Нарушения сплошности материала Методы выявления

Поверхность разрыва сплошности материала

Реальные твердые тела и идеализированное тело сопротивления материалов. Деформируемость, изотропность, однородность, сплошность

Связь магнитных полей нарушений сплошности с их геометрическими параметрами и магнитными свойствами материалов

Сплошность



© 2025 Mash-xxl.info Реклама на сайте