Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Уравнение Даламбера—Эйлера

Эти уравнения называют также уравнениями Даламбера — Эйлера. См., например, А. И. Марк у hj е в и ч. Краткий курс теории аналитических функций, Физматгиз, 1961, стр. 31. (Прим. перев.)  [c.181]

После Даламбера Эйлер представил в окончательном виде уравнения движения твердого тела вокруг неподвижной точки ). Он же первый нашел точные интегралы в случае, когда внешние силы равны нулю, или имеют равнодействующую, проходящую через неподвижную точку. (См. Мемуары Берлинской Академии за 1758 г.)  [c.136]


Вариационный принцип Гамильтона (общий случай). Общее уравнение динамики Даламбера—Эйлера является вариационным принципом механики, выраженным в дифференциальной форме. Важнейшим интегральным вариационным принципом аналитической механики является принцип Гамильтона, который может быть выведен из общего уравнения динамики. Пусть все связи, наложенные на систему, — идеальные. Уравнение (17) принимает вид  [c.36]

Даламбер, Эйлер, Лагранж создали принцип, основанный на сравнении движений. Этот принцип изучает мгновенное состояние движения и возможные отклонения от этого состояния, допускаемые связями в данный момент времени (возможные перемещения). Для механических систем с голономными идеальными связями из этого принципа непосредственно следуют уравнения движения системы материальных точек — уравнения Лагранжа второго рода.  [c.500]

Все вышесказанное относилось только к изучению двумерных течений, т. е. к крылу бесконечного размаха . Для изучения же реальных самолетов требуется решение задачи трехмерного обтекания, в постановке которой еще нет полной ясности даже в рамках модели несжимаемой жидкости. Имеется в виду следующее. При изучении трехмерного обтекания несжимаемой жидкостью ограниченного тела, которое производится в классе непрерывных решений уравнения Лапласа для потенциала скорости (задача Неймана), имеет место, как известно, парадокс Даламбера-Эйлера, состоящий в том, что жидкость не оказывает силового воздействия на обтекаемое тело.  [c.170]

Лагранж, Жозеф Луи (25.1.1736-10.4.1813) — великий французский математик, механик, астроном. В своем знаменитом трактате Аналитическая механика (в 2-х томах), наряду с общим формализмом динамики, привел уравнения движения твердого тела в произвольном потенциальном силовом поле, используя связанную с телом систему координат, проекции кинетического момента и направляющие косинусы (том II). Там же указан случай интегрируемости, характеризующийся осевой симметрией, который был доведен им до квадратур. Следуя своему принципу избегать чертежей, Лагранж не приводит геометрического изучения движения, а рисунки поведения апекса, вошедшие ранее почти во все учебники по механике, впервые появились в работе Пуассона (1815 г), который рассмотрел эту задачу как совершенно новую. Пуассон, тем не менее, систематизировал обозначения, усложняющие понимание трактатов Даламбера, Эйлера и Лагранжа и рассмотрел различные частные случаи движения (случай Лагранжа в некоторых учебниках называют случаем Лагранжа-Пуассона). В свою очередь Лагранж упростил решение для случая Эйлера и дал прямое доказательство существования вещественных корней уравнения третьей степени, определяющих положение главных осей. Отметим также вклад Лагранжа в теорию возмущений, позволивший Якоби рассмотреть задачу о возмущении волчка Эйлера и получить систему соответствующих оскулирующих переменных.  [c.21]


Необходимым условием выполнения уравнения (2) является условие Даламбера — Эйлера  [c.177]

Уравнения гидродинамики составлены на основании принципов и законов, разработанных такими исследователями, как Ньютон, Даламбер, Эйлер, Лагранж и другие. Так, основная идея этого принципа формулируется Даламбером следующим образом Для того чтобы найти движение нескольких тел, действующих друг на друга, нужно разложить полученные телами движения, т. е. движения, с которыми тела стремятся двигаться, на два других движения. Эти составляющие движения должны быть подобраны таким образом, что у каждого тела одно из этих составляющих движений должно уничтожаться, а другое должно быть таким и так направленным, чтобы действие окружающих тел не могло ничего в нем изменить. Отсюда легко видеть, что все законы движения тел могут быть сведены к законам равновесия. В самом деле, для решения любой задачи динамики нужно только разложить движение каждого тела на два движения. Зная одно из этих составляющих движений, мы сможем найти другое. Указанные условия всегда дадут все уравнения. Нет такой задачи динамики, которую нельзя было бы решить таким приемом [39].  [c.12]

Расстояние АВ между опорами тела обозначим h. На основании принципа Германа —Эйлера —Даламбера внешние задаваемые силы, реакции связей и силы инерции должны удовлетворять уравнениям  [c.289]

Согласно принципу Германа— Эйлера — Даламбера составим для плоской системы сил С, Yj , Уи Ф уравиеиия, соответствующие уравнениям (108.3) и (108.5), в следующем виде  [c.297]

Каково число и каков вид уравнений, выражающих принцип Германа — Эйлера —Даламбера для несвободной механической системы в проекциях на оси  [c.297]

Метод решения очень важной задачи о движении несвободной материальной системы с помощью уравнений статики был предложен в 1716 г. Я. Германом (впоследствии академиком Российской Академии наук) и в 1737 г. обобщен Л. Эйлером. Позднее этот метод получил развитие в трудах французского ученого Даламбера (1717—1783). Нельзя не упомянуть также имени французского ученого Лагранжа (1736—1813), проделавшего большую работу по математическому обоснованию законов механики. Выводы Лагранжа были уточнены и дополнены русским математиком и механиком, академиком М. В. Остроградским (1801—1861). Им же разработана общая теория удара, решен ряд важнейших задач из области гидростатики, гидродинамики, теории упругости и др.  [c.5]

Следует отметить, что до Даламбера над общим методом, с помощью которого уравнениям динамики придается форма уравнений статики, работали члены Петербургской Академии наук Я. Герман (1716) и Л. Эйлер (1737).  [c.134]

Заметим в заключение, что данное уравнение мы получили, пользуясь началом Даламбера, поскольку для вывода его было применено уравнение Эйлера. Ранее, рассматривая установившееся движение (см. 3-12), мы выводили уравнение Бернулли, исходя из теоремы изменения кинетической энергии. Вместе с тем уравнение Бернулли для установившегося движения легко может быть получено и из уравнения (9-15), если в него подставим Ц = 0.  [c.343]

Ни Д. Бернулли, ни Эйлер не располагали еще тогда общим методом сведения задач динамики к задачам статики. Даламбер, разработавший такой метод, смог вывести в 1750 г. первое уравнение математической физики в частных производных — уравнение поперечных колебаний однородной струны в виде  [c.267]

Я приступил к решению этой задачи, анализ которой казался мне сам по себе новым и интересным, так как одновременно надо решать уравнения, число которых не является определенным. К счастью, метод, которым я воспользовался, дал мне формулы не слишком сложные, если учесть большое число операций, которые пришлось проделать. Я рассматриваю эти формулы сначала в том случае, когда число движущихся тел конечно, и я легко получаЮ всю теорию смешения простых и правильных колебаний, которую г-н Даниил Бернулли нашел только с помощью частных и косвенных примеров. Я перехожу к случаю бесконечного числа движущихся тел, и, показав недостаточность предыдущей теории в этом случае я извлекаю из моих формул то же построение для решения проблемы колеблющихся струн, которое дал г-н Эйлер и которое так энергично оспаривалось г-ном Даламбером В последнем замечании Лагранж имеет в виду графическое построение Эйлера, которое  [c.268]


Парадокс Даламбера нельзя распространить на сверхзвуковое течение даже без учета вязкости математические соображения приводят к существованию положительного лобового сопротивления. Ввиду парадокса обратимости это возможно только потому, что краевая задача (для стационарного движения), определяемая уравнениями Эйлера, не является корректной. Мы покажем сейчас это, начав с рассмотрения линеаризованного сверхзвукового течения (теория тонкого крыла ).  [c.34]

Из всех гироскопических проблем, возникающих в технике, баллистическая проблема ранее других подверглась математическому и экспериментальному исследованию (Даламбер, Эйлер, Пуассон, Магнус) однако и поныне ее решение остается, пожалуй, наименее полным. Дело в том, что она представляет собой не чисто динамическую, а дина-мически-гидродинамическую проблему. Действительно, решающую для баллистики величину силы сопротивления воздуха можно определить, строго говоря, только в связи и одновременно с движением снаряда, пользуясь основными уравнениями гидродинамики.  [c.209]

Общее уравнение дииамнкн Даламбера—Эйлера. Уравнения динамики системы материальных точек и уравнения связей (6) эквивалентны следующему утверждению движение системы происходит так, что в любой момент времени сумма работ всех внешних и внутренних сил, реакций связей и даламберовых сил инерции на любых виртуальных перемещениях равна нулю. Аналитическая запись этого утверждения имеет вид  [c.34]

Подводя итоги, мы приходим к выводу, что развитие теории упругости к концу XVJII в. продолжало значительно отставать от уровня развития гидромеханики. Если в гидромеханике трудами Клеро, Даламбера, Эйлера и Лагранжа уже был создан единый аналитический аппарат дифференциальных уравнений в частных производных, описывающих движение идеальной жидкости, то в теории упругости в этот период решаются лишь отдельные частные задачи статики и динамики твердых тел, в которых учитываются упругие свойства материала. Однако до создания обобщающих теорий не дошли. Аналитический аппарат дифференциальных уравнений был применен только к рассмотрению одномерных задач теории упругости и не дал удовлетворительных результатов при рассмотрении двумерных задач, Б теории упругости важные результаты были получены при изучении внутренних сил. Было установлено, что внутренние силы могут действовать не только по нормали к сечению, по и под любьш углом к нему, в том числе и по касательной. Все это очень близко подводило к общему понятию напряжения (в работах Кулона),  [c.189]

В середине XVIII в. Эйлер вывел общие уравнения движения идеальной жидкости. Даламберу, Эйлеру и Лагранжу принадлежат и первые исследования потенциального движения идеальной жидкости. На этой основе Лагранж построил теорию так называемых длинных волн. Рассматривалось движение волн в бесконечном прямолинейном канале постоянной глубины k. Направим ось Ох вдоль свободного уровня в его невозмущенном положении, а ось Оу — вертикально вверх и будем считать потенциал скоростей F функцией 01 X, у ж времени t. Величина у не должна значительно отличаться от нуля, поэтому разлагаем F по степеням у  [c.271]

Аналитическая динамика начала развиваться в конце XVII— начале XVIII в., в период буржуазной революции в Европе. Торричелли и Бернулли положили начало аналитической статике. Галилей и Ньютон сформулировали основные законы динамики, а в конце XVIII в. Лагранж разработал основы современной аналитической динамики. Весь этот период характеризуется бурным развитием техники и точных наук. В результате появилась потребность к обобщению накопленных знаний, к созданию таких принципов, откуда бы вытекали все основные положения механики. Одним из результатов такого обобщения явился принцип Даламбера — Эйлера — Лагранжа, как наиболее общий принцип механики. Он позволил сформулировать различные задачи о движении в виде системы дифференциальных уравнений.  [c.443]

Среди колеблющихся тел ни одно не занимает такого выдающегося положения, как натянутые струны. С давних пор они применяются для музыкальных целей, да и в настоящее время они все еще являются существенной частью таких важных инструментов, как фортепиано и скрипка. Для математика они всегда должны представлять особый интерес, ибо именно вокруг них разыгрывались споры Даламбера, Эйлера, Бернулли и Лагранжа относительно природы решений дифференциальных уравнений в частных производных. Для изучающих ак)сгику струны вдвойне важны. Благодаря сравнительной простоте их теории они являются основой, которая облегчает рассмотрение трудных или неясных вопросов, таких, как вопросы, связанные с природой простых тонов с другой стороны, в форме монохорда или сонометра струны дают исключительно удобное средство для сравнения высот.  [c.193]

Упражнение II. 5.3 (Даламбер, Эйлер). Движение тела 3S называется зо- , хорическйм, если объем (х( . 0) конфигурации любой части 3 тела if остается постоянным во времени. Показать, что необходимым и достаточным. условием изохоричности движения является выполнение любого из следующих трех уравнений  [c.92]

В XVIII в. начинается интенсивное развитие в механике аналитических методов, т. е. методов,- основанных на применении дифференциального и интегрального исчислений. Методы решения задач динамики точки и твердого тела путем составления и интегрирования соответствующих дифференциальных уравнений были разработаны великим математиком и механиком Л. Эйлером (1707—1783). Из других исследований в этой области наибольшее значение для развития механики имели труды выдающихся французских ученых Ж. Даламбера (1717—1783), предложившего свой известный принцип решения зйдач динамики, и Ж. Лагранжа (1736—1813), разработавшего общий аналитический метод решения задач динамики на основе принципа Даламбера и принципа возможных перемещений. В настоящее время аналитические методы решения задач являются в динамике основными.  [c.7]


Принципом Германа — Эйлера — Даламбера называют общий метод, при помощи которого уравнениям динамики по форме придается вид уравнений статики. Зтот метод, предложенный в 1716 г. Германом и обобщенный в 1737 г. Эйлером, получивший название петербургского принципа, часто иазываЕОТ началом или принципом Даламбера, хотя действительная сущность начала Даламбера не аналогична пет.фбургскому принципу  [c.279]

Решение. Для определения реакций опор при помощи принципа Германа—Эйлера— Даламбера к точкам системы условно прикладывают их силы инерции и освобождая систему от связей, прикладывают реакции этих связей. В. зависимости от вида полученной системы сил составляют те или иные уравнения проекций сил на оси, соответствующие векторному уравнению (108.3), и уравнения моментов сил относительно осей, соответствующие иекторпому уравнению (108.5 ).  [c.293]

Добавим к силам G и Т силу инерции Q , направнв ее противоположно ускорению а . Согласно принципу Германа—Эйлера — Даламбера, силы G, Т и Q образуют уравновешенную систему. Поэтому, выбрав оси координат, как показано на рис. 1.186, б, составим два уравнения равновесия  [c.158]

Формулы (44) и (47) решают ноставленпую задачу в предположении, что известно решение (42) дифференциального уравнения (40) это уравнение приводится к квадратурам лишь при некоторых частных предположениях о виде функции f(v), например, в следующих случаях f(v) = av, f(v) = bv , f(v) = = ао + (Ньютон, Эйлер), f(o) = u" (И. Бернулли), f(o) = = а + йо" (Даламбер) и др. Во внешней баллистике уравнение (40) обычно интегрируют численными методами.  [c.48]

И Даламбер, которому мы обязаны нахождением этого интеграла в произвольных функциях, всегда утверждал, что вытекающее отсюда построение только тогда законно, когда начальная кривая имеет такой вид, что в силу своей природы она имеет равные и подобные ветви, попеременно лежащие выше и ниже оси и которые все заключаются в одном и том же уравнении, для того, чтобы та же функция могла представить данную кривую со всеми ее ветвями, до бесконечности. Наоборот, Эйлер, принимая аналитическое решение Даламбера, полагал, что для образования непрерывной кривой достаточно перемещать начальную кривую попеременно вверх и вниз от оси до бесконечности, не заботясь о том, могут ли различные ветви быть связаны одним и тем же уравнением и подчинены закону непрерывности аналитических функций. См. Memoires de Berlin за 1747 и 1748 гг. и т. I и IV Opus ules Даламбера.  [c.517]

Изданием в 1736 г. Механики Лагранж заложил основы аналитической механики, которой затем много занимались он сам, Клеро, Даламбер, Д. Бернулли и другие ученые XVIII в. Но у Эйлера задачи механики, хотя и решаются средствами анализа бесконечно малых, однако каждая сводится к решению уравнений по-своему. Кроме того, сочинение Эйлера 1736 г.— это механика материальной точки. В своих дальнейших трудах, как мы уже знаем, Эйлер и другие ученые развили динамику твердого тела. Лагранж охватил лмехаиику системы материальных точек и тел и создал единообразный и общий метод сведения механических задач к решению соответствуюш их математических задач. Но ясно, что при этом ему приходилось исходить из каких-то физических, эксиериментальных положений. Каковы эти положения И насколько общими являются методы Лагранжа, действительно ли они охватывают все задачи механики  [c.202]

Громадные преимущества аналитического метода настолько очевидны, что влияние Механики Эйлера проявилось немедленно по ее опубликовании. Динамика Даламбера вышла в свет в 1743 г., автор работал над ней не позже 1742 г., т. е. всего через шесть лет после выхода Механики Эйлера. Вместе с тем этот труд полностью порывает с синтетическо-геометрическим методом. Роли анализа и синтетической геометрии меняются на противоположные. Если до Эйлера анализ служил для того, чтобы облегчить синтез геометрического доказательства, то теперь геометрия, если и применяется, то только для того, чтобы облегчить составление дифференциального уравнения задачи Но истинная ценность вклада Даламбера состоит в том, что он впервые сформулировал в механике единый принцип. Конечно, всю силу этого принципа он смог показать только потому, что использовал огромный труд Эйлера, посвященный аналитическому методу в механике.  [c.146]

Труды Ж. Даламбера по гидродинамике начали появляться почти одновременно с гидродинамическими исследованиями Эйлера. Сочинение Даламбера 1744 г. Трактат о равдовесии движения жидкостей по словам автора, пронизан стремлением соединитБ геометрию (математику, а точнее, аналитические методы) с физикой (результатами опытов). Даламбер занимался экспериментальными исследованиями сопротивления движению тел в жидкости в связи с запросами кораблестроения. Его подход ко всем задачам механики системы и, в частности, к вопросам гидромеханики базируется на основной идее, выраженной в его знаменитом принципе, согласно которому законы динамики могут быть представлены в форме уравнений статики. В упомянутом трактате этот метод применяется к разнообразным тонким вопросам движения жидкости в трубах или сосудах. Даламбер исследовал законы сопротивления при движении тел в жидкостях и указал интегрируемый в квадратурах случай. Процесс образования вихрей и разреженности за движущимся телом он объяснял вязкостью жидкости и ее трением о новерх-186 ность обтекаемого тела.  [c.186]

Лагранж в 60-е годы отправлялся от этих работ в своих исследованиях колебаний системы конечного числа материальных точек. Ему было нетрудно придать утверждению Д. Бернулли форму математической теоремы, так как в 40-е годы XVIII в. Эйлер показал, как проинтегрировать линейное дифференциальное уравнение произвольного порядка с достоянными коэффициентами, а Даламбер — как интегрируются системы таких уравнений. Это позволяло просто сослаться на то, что общий интеграл дифференциальных уравнений описывающих малые колебания, является суммой слагаемых, каждое из которых соответствует малым изохронным колебаниям простого маятника. При этом, однако, надо было допустить, что корни алгебраического уравнения (уравнения частот, или векового уравнения ), которое попутно приходится решать, вещественны, положительны и не равны между собой. Однако Лагранж этим не ограничился и провел все исследование в общем виде, используя открытую им форму уравнений движения — уравнения Лагранжа второго, рода. В первом издании Аналитической механики Лагранжа (1788 г.) эти результаты даны в улучшенной редакции, в окончательном виде они вошли во. второе издание Аналитической механики (т. I., 1813 г.).  [c.265]

После Эйлера в течение XVIII в. теория устойчивости развивается в русле динамики в двух направлениях. Одним из них является изучение малых коле- 119 баний механической системы около положения равновесия. Этим вопросом занимались А. Клеро, Д. Бернулли, Ж. Даламбер, Ж. Лагранж. В Аналитической механике Лагранжа (1788) теория малых колебаний системы с конечным числом степеней свободы изложена в ее классической форме. Ответ на вопрос, устойчиво ли для данной системы положение равновесия, около которого она начинает колебаться, дает исследование корней алгебраического уравнения, определяющего частоты колебаний, соответствующих отдельным степеням свободы. (При этом, как известно, Лагранж высказал ошибочное утверждение, что при наличии кратных корней уравнения частот должны появляться вековые члены и устойчивости не будет.)  [c.119]


Доказательство этой теоремы приводить не будем. Оно очень просто, если принять во внимание, что силы энерции всех масс, заполняюш,их струйку, эквивалентны двум силам секундного количества движения, а затем применить принцип Даламбера. Итак, пользуясь теоремой Эйлера, мы можем, как и для принципа Даламбера, струйку рассматривать как твердое тело и применять для нее все уравнения статики твердого тела.  [c.31]


Смотреть страницы где упоминается термин Уравнение Даламбера—Эйлера : [c.351]    [c.9]    [c.88]    [c.257]    [c.294]    [c.295]    [c.13]    [c.307]    [c.198]    [c.268]    [c.59]    [c.21]    [c.13]    [c.13]    [c.2]   
Вибрации в технике Справочник Том 1 (1978) -- [ c.34 ]



ПОИСК



Даламбер

Уравнение Даламбера

Уравнение Эйлера

Эйлер

Эйлера эйлеров

Эйлера — Даламбера



© 2025 Mash-xxl.info Реклама на сайте