Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Микротвердости Применение

Проведенные исследования влияния отдельных факторов, контролирующих процесс МДО, а также их совокупности, на свойства и качество покрытий выявили как наиболее значимый в практическом применении анодно-катодный режим МДО, в котором покрытия формируются с наилучшим комплексом механических свойств высокими значениями микротвердости, адгезии, прочности и износостойкости.  [c.167]


Каждый из перечисленных методов не позволяет осуществить надежный и достаточно полный контроль температур . в зоне трения. Для решения этой задачи необходимо применять комплексный метод исследования тепловых явлений, включающий измерение температуры с применением термопар, металлографический и рентгеноструктурный анализы, измерение микротвердости тонкого поверхностного слоя. Совместный анализ результатов измерений позволит установить связь между температурой нагрева металла, микроструктурой и микротвердостью поверхностного слоя в различных точках поверхности трения и на различных расстояниях от нее.  [c.214]

Микротвердость композиционных покрытий существенно выше, чем микротвердость чисто металлических покрытий, — в 1.5 — 2 раза для композиционных покрытий на основе никеля и в 2— 2.5 раза для композиционных покрытий на основе меди. Увеличение концентрации суспензии мало влияет на микротвердость композиционных покрытий в то же время варьирование микротвердости можно осуществлять путем применения различных наполнителей.  [c.28]

Определение микротвердости вдавливанием по методу невосстановленного отпечатка предусматривает одновременное с приложением нагрузки измерение глубины отпечатка. Испытания такого рода находят пока что ограниченное применение и проводятся в том случае, когда требуются дополнительные характеристики материала (упругое восстановление, релаксация, ползучесть при нормальной температуре).  [c.28]

К недостаткам метода замера микротвердости следует отнести высокий уровень погрешностей, особенно возрастающих при испытании покрытий с применением малых нагрузок. Поэтому желательно, чтобы диагональ отпечатка не была менее 8—10 мкм. Величина погрешности зависит от идентичности нагружения, выбора оптимальной нагрузки, качества настройки систем прибора и других причин. Особенно большие погрешности вносят внешние вибрации, поэтому прибор необходимо устанавливать на массивном основании.  [c.28]

Особый интерес с точки зрения механизма формирования сферических частиц представляет анализ их структуры и состава [88-90]. Применение методов микро-рентгено-спектрального анализа на растровом электронном микроскопе показало, что частицы не имеют никаких особенностей по сравнению с основным материалом в виде избытков легирующих элементов. Измерение микротвердости частиц размером около 10 мкм покат зало, что она более чем в 1,5 раза выше, чем у основного материала. Последнее обусловлено процессом обкатки частиц и их упрочнением.  [c.156]


На рис. 116 показано изменение микротвердости по глубине поверхностного слоя в зависимости от режимов обработки и внешней среды. Как следует из графика, наименьшее увеличение микротвердости обеспечивает обработка в режиме зачистки с применением химически-активной среды (кривая 2). В качестве такой среды использовали водный раствор ортофосфорной кислоты (50 г/л), в который вводили поверхностно-активное вещество синтанол ДС (10,5 г/л). При обработке в режиме зачистки без применения ХАС (кривая 1) микротвердость повышалась на 12%. Обработка в режиме резания вызывала упрочнение поверхностного слоя на 145% (кривая 4).  [c.255]

В случае применения ХАС микротвердость тонкого поверхностного слоя (до 15 мкм) значительно снижалась по сравнению с обработкой в режиме резания без среды. Меньшая микротвердость при обработке поверхности труб с использованием химически активных сред была обусловлена проявлением хемомеханического эффекта.  [c.255]

С развитием атомной энергетики одним из наиболее важных является вопрос о том, какое влияние оказывает облучение на свойства различных металлов и сплавов. Облучение металлов ядерными частицами создает дефекты в кристаллической решетке, что ведет к значительному изменению физических и механических свойств материалов, однако природа и механизм образования этих дефектов пока еще однозначно не установлены. Очень плодотворным здесь оказалось применение метода микротвердости. При этом условия проведения испытаний не позволяют исследователю непосредственно наблюдать микроструктуру образца. В настоящее время ведутся обширные работы [20—22, 31—37] по исследованию микроструктуры и физико-химических свойств материалов под действием нейтронного облучения.  [c.238]

Кратко обобщены результаты работ по исследованию структур металлов методом микротвердости. Рассмотрены основные направления применения метода микротвердости для исследования металлов. Приведены экспериментальные данные, подтверждающие целесообразность применения метода микротвердости в целях физико-химического анализа, в области технологии металлов и металловедения, для изучения пластической и упругой деформации металлов и сплавов при механической обработке. Особое внимание обращено на изучение влияния облучения на физико-химические и механические свойства металлов. Описана аппаратура, применяемая для исследовательских работ в агрессивных средах.  [c.264]

Метод измерения микротвердости может также найти широкое применение при оценке механических свойств полярных граней в кристаллах с отсутствием центра симметрии.  [c.255]

Преимущественное развитие усталостных трещин происходит в поверхностных слоях, что обусловлено более ранним по сравнению с остальным объемом металла повреждением поверхностных слоев из-за более раннего накопления в этих слоях критической плотности дислокаций [83]. Поскольку процесс усталости во всей массе протекает неоднородно, то для изучения изменения свойств в процессе циклического нагружения необходимы характеристики, которые позволяли бы судить о процессах, происходящих в локальных объемах металла. В связи с этим при изучении усталостного разрушения широкое применение нашли методы измерения твердости и микротвердости, рентгеновского анализа, оптической и электронной микроскопии. Результаты этих исследований представляют большой интерес для выявления сходства и различия кинетики накопления структурных повреждений и разрушения в условиях объемного циклического нагружения и при фрик-ционно-контактной усталости, поскольку аналогичные методы исследования широко применяются при трении. Методы интегральной оценки структурных изменений, такие, как измерение электросопротивления (проводимости), внутреннего трения, магнитных свойств, несмотря на то что требуют специальной подготовки образцов и соответственно испытательного оборудования, также могут быть полезны для исследования процессов трения.  [c.33]


Используя указанные соотношения, можно оценить другие свойства измерением только одной из характеристик покрытий, например микротвердости. При применении асимметричного и реверсированного токов составы композиций существенно не изменяются, но могут изменяться физико-механические свойства покрытий.  [c.87]

Питатель абразива включался после стабилизации скорости вращения разгонной трубки. В качестве абразива применялся монодисперсный порошок нормального электрокорунда № 16 с микротвердостью по прибору ПМТ-2 около 2000 кг/мм . Повторно в экспериментах абразивный порошок не использовался. В связи с применением электрокорунда при повышенной температуре были проведены опыты по изнашиванию образцов стали Ст. 3 холодным и предварительно нагретым до 600° абразивом, которые показали, что в пределах этих температур абразивные свойства электрокорунда не меняются.  [c.98]

Волочение используется для получения заготовок сплошных или полых деталей, сечение которых по всей длине постоянно. Применение волочения для обработки таких деталей взамен резания обеспечивает сокращение расхода металла до 45% и снижение трудоемкости до 20%. Волочение обеспечивает точность размеров в поперечном сечении но 3—4-му классу (в отдельных случаях точность может быть повышена до 2-го класса), чистоту поверхности — по 8—9-му классу, а повышение микротвердости по отношению к исходной на 10—30%.  [c.249]

Местное воздействие нагрузки на небольшую часть поверхности образца и малый объем испытуемого металла являются несомненным преимуществом этих методов испытания на твердость, при которых изделие не разрушается и поступает в эксплуатацию. При необходимости можно осуществлять 100-про центный контроль деталей. Приборы для определения твердости обычно портативны, просты в обслуживании и высокопроизводительны. Эти преимущества привели к широкому применению испытаний на твердость, которые являются самыми распространенными контрольными испытаниями. Особенно большой интерес при проведении тонких исследований представляет метод замера микротвердости.  [c.364]

Структура образца, обработанного с применением тока (рис. 12, б), на глубину около 0,1 мм имеет светлую зону. Светлая зона и основной металл имеют четкую границу, что указывает на существенное различие природы этих структур. Рентгенографическое исследование показало, что светлая зона поверхностного слоя представляет собой мартенсит и имеет значительна более высокую микротвердость ( Я 5360 МПа). Исследование структуры поверхностного слоя на электронном микроскопе ЭМ-3 с применением лаковых препаратов, оттененных хромом,  [c.22]

Образцы сглаживались инструментом диаметром 45 мм с фаской 2 мм при силе тока 2000 А. Микротвердость упрочненных роликов в среднем составляла 7700 МПа, неупрочненных — 3000 МПа. Для получения одинаковой исходной шероховатости наружные поверхности упрочненного и неупрочненного роликов шлифовали на одной оправке с применением охлаждающей жидкости.  [c.54]

Влияние термической обработки на эффективность упрочнения ЭМО исследовалось иа машине МУИ-6000. Образцы диаметром 9,48 мм (в рабочей части) изготовлялись из нормализованной прутковой стали 45. Перед шлифованием производилась закалка образцов в воде и их отпуск при температурах 200, 300, 400, 500, 600 °С. Часть образцов каждой серии подвергалась надрезу твердосплавным резцом с последующей обработкой надреза абразивным диском с / = 0,75 мм на глубину 0,4 мм. Упрочнение гладких образцов производилось с использованием силы тока / = 220 А при о = 5,1 м/мин 5 = 0,14 мм/об Д = 200 и дополнительно без тока при ц=14,5 м/мин и 5 = 0,1 мм/об. Геометрия пластины / = 2,2 мм г=14 мм. Шероховатость поверхности упрочненных и шлифованных образцов соответствовала / а = 0,32...0,63 мкм. После упрочнения глубина светлого слоя составляла 0,05...0,06 мм, а микротвердость 6900...7400 МПа. Упрочнение поверхностей надрезов производилось пластиной (Я —2,2 мм /-=14 мм) с силой тока /=300 А при ц=9 м/мин Р = 500 Н и дополнительно без применения тока. Результаты испытаний приведены на рис. 50. Для надрезанных образцов при увеличении твердости до 420 НУ предел выносливости увеличивается, после чего повышение твердости приводит к некоторому снижению прочности.  [c.68]

Качественные и количественные изменения в процессе хромирования возможны из-за применения тока высокой плотности, при котором выход хрома возрастает. С увеличением скорости протекания электролита от 0 до 200 см/с микротвердость осажденного металла повышается от 7000 до 10 000 МПа при ведении процесса с плотностью тока 45 А/дм и температуре электролита 45 X.  [c.188]

Свойства изделий из спеченного ВеО- Полученные из порошкового оксида бериллия изделия обладают весьма ценными свойствами. В спеченном оксиде бериллия удается реализовать специфические природные физические свойства этого оксида и получить материал с исключительно высокой теплопроводностью, большой механической прочностью, отличной термостойкостью. Оксид бериллия имеет исключительную способность рассеивать радиоактивное излучение высоких энергий, что послужило причиной применения этого материала в ядерной энергетике в качестве различных элементов тепловых реакторов. Технические свойства изделий из оксида бериллия могут существенно зависеть от технологических методов производства. Некоторые свойства определяются главным образом плотностью обожженных изделий. Чем больше плотность, чем больше она приближается к теоретической, тем выше могут быть показатели этих свойств. В зависимости от методов оформления изделий и температуры окончательного обжига плотность спеченного оксида бериллия может составлять 0,9—0,99 тео- ретической. Твердость хорошо спеченного ВеО по шкале Мооса 9, микротвердость 15,2 ГПа. Механические свойства спеченного оксида бериллия как в холодном, так и в нагретом состоянии зависят главным образом от плотности, характера кристаллизации и наличия - примесей, образующих инородную фазу. Известное влияние оказывает также метод изготовления изделий. Предел проч ности при сжатии при нормальной температуре (по определению большинства исследователей) образцов плотностью 2,9 г/см составляет около 1500 МПа.  [c.132]


Таким образом, могут подтвердиться результаты рентгеновского исследования, даже если кристаллы фаз X и У не были разделены различным окрашиванием при -правлении. В такого рода исследованиях метод микроанализа последовательной серии сплавов дает результаты, которые никогда нельзя получить при изучении структур беспорядочно выбранных образцов. Если этот метод оказывается безуспешным, то должен быть применен метод микротвердости, описанный выше.  [c.365]

Методы механических испытаний на твердость можно условно разделить на статические и динамические. К статическим методам определения твердости относятся методы Бринелля, Роквелла, Виккерса, ври которых медленно нарастающая нагрузка прилагается к вдавливаемому стандартному наконечнику. К динамическим методам, применяемым реже статических, относятся методы упругой отдачи (метод Шора) и ударного вдавливания стального закаленного шарика (метод Польди). В исследовательской практике, помимо указанных, имеют применение метод определения твердости путем царапания и метод определения микротвердости..  [c.114]

Интенсивное образование интерметаллидов и повышение диффузионной подвижности атомов в диффузионной зоне медненого титанового сплава ВТ-9 приводят к улучшению физико-механических свойств поверхностных слоев образцов. Например, при взрывной обработке в определенных условиях медненого титанового сплава ВТ-9 нами была получена микротвердость на поверхности образца до 800—1000 кгс/мм без применения значительных нагревов, только за счет повышенной диффузионной подвижности атомов в динамически деформированном сплаве. При этом усталостная прочность остается на прежнем уровне или незначительно увеличивается (на 2—3 кгс/мм ), а износостойкость увеличивается в 3—5 раз.  [c.123]

Различают два метода испытаний по восстановленному отпечатку (основной метод) и по невосстановленному отпечатку (дополнительный метод) [36]. Результат испытания по первому методу характеризует сопротивление материала пластической и упругой деформации при вдавливании алмазного наконечника статической нагрузкой в течение определенного времени. После снятия нагрузки и удаления наконечника измеряют параметры оставшегося отпечатка, по которым, пользуясь формулами и таблицами, определяют величину микротвердости. Рекомендуется использовать наконечники четырех форм четырехгранной пирамиды с квадратным основанием трехгранной пирамиды с основанием в виде равностороннего треугольника, четырехгранной пирамиды с ромбическим основанием, бицилиндрический наконечник. Наибольшее распространение получили испытания с применением наконечника в форме четырехгранной пирамиды с квадратным основанием. Угол заострения алмазного четырехгранного наконечника составляет 2,38 рад (136°). Продолжительность действия нагрузки должна быть не менее 3 с. Шероховатость рабочей поверхности (плоскость шлифа) 0,32 мкм по ГОСТу 2789-73.  [c.27]

Универсальные установки для изучения прочности материалов при высоких температурах методами растяжения, микротвердости известны с 1959 г. Первая такая установка типа ИМАШ-9 служила для измерения микротвердости при растяжении и нагреве в вакууме до температуры 1570 К [ИЗ, 114, 118]. Более совершенная серийная установка ИМАШ-9-66 предназначена для оценки прочности металлов и сплавов при температурах от 300 до 1400 К в вакууме и защитных газовых средах [118, 119, 134]. Основным недостатком этих установок является применение только одного метода нагрева путем прямого пропускания через образец электрического тока низкого напряжения промышленной частоты. В последние годы показано, что при пропускании тока через образец возникает электропластический эффект уменьшения сопротивления металлов пластической деформации [84, 85, 182, 195, 196, 197, 198]. Установки типа НМ-4 японской фирмы Юнион оптикал используют радиационный нагрев образца при растяжении до 1770 К и при измерении микротвердости до 1270 К [119, 226].  [c.95]

Боярская Ю. С. Применение метода микротвердости к изучению радиационных эффектов в монокристаллах.— В кн. Четвертое Все-союз, науч. техн. совещ. по микротвердости Тез. докл. М., 1972, с. 45—46.  [c.195]

Процесс механического разрушения пленок окислов может сопровождаться, при соответствующих режимах обработки инструментом, упруго-пластическим деформированием поверхностного слоя металла и вскрытием его отдельных участков, что обеспечивает контакт ХАС с границей раздела фаз Рбз04 и FeO, а также металла с окислами. Механическая активация металла в процессе упруго-пластического деформирования должна, вследствие проявления механохимического эффекта, привести к ускоренному растворению поверхностных атомов железа и нарушению связи с окислами, что облегчает последующее их механическое удаление. Следовательно, регулируя степень механической активации, можно регулировать скорость растворения и интенсивность удаления окисленного слоя металла. Растворение окислов, прилегающих к металлу, и поверхностных атомов железа создает условия для развития хемомеханического эффекта, что обобщенно должно проявиться в снижении твердости поверхностного слоя металла и внедрении в него режущей кромки инструмента на большую глубину по сравнению с механической обработкой в аналогичных режимах. Выше было показано, что применение механохимического способа обработки, заключающегося в совместном действии механического воздействия и электролита, позволяет не только резко уменьшить поверхностное упрочнение, но и снизить микротвердость тонкого поверхностного слоя относительно исходного состояния, что улучшает адгезию защитного покрытия и повышает коррозионную стойкость металла.  [c.253]

Основное преимущество применения метода микротвердости в металловедении — возможность изучения свойств малых объемов материалов, например отдельных фаз и структурных составляющих металлических сплавов. В настоящее время имеется больщое количество работ по исследованию методом микротвердости структур металлов, в частности, облученных нейтронами. В данной работе сделана попытка кратко обобщить результаты, относящиеся к этому вопросу.  [c.236]

Возможность применения метода микротвердости в целях физико-химического анализа обосновал Н. С. Курнакоз  [c.236]

Многие авторы применяли метод микротвердости для изучения растворимости металлов или при несущественном изменении параметра решетки. С изменением концентрации твердого раствора В. М. Глазов и В. Н. Вигдарович [26] изучали предельную растворимость ряда переходных металлов Zr, Та, Nb и других в алюминии с применением метода микротвердости. В результате исследований установлена зависимость микротвердости кристаллов твердого раствора от состава сплавов Zr—А1, Та—А1, Nb—А1 и др., закаленных после отжига при различных температурах, и построены кривые предельной растворимости Zr, Та, Nb в алюминии.  [c.237]

В Лаборатории высокотемпературной металлографии Института машиноведения разработана методика применения телевизионных анализаторов изображения типа Quantimet и РМС для исследования особенностей пластической деформации и разрушения биметаллических материалов. Использование этой методики позволило с большой точностью производить подсчет числа полос скольжения, возникающих на поверхности образцов при их нагружении, измерять длину возникшей усталостной трещины и площадь пластической деформации, развивающейся в ее вершине, а также исследовать процессы диффузии элементов через границу раздела слоев биметалла и производить измерение отпечатков ин-дентора при исследовании микротвердости [1]. Все указанные измерения проводились на образцах после их извлечения из рабочих камер испытательных установок.  [c.11]


Сплав Со—СгзСг содержит 28—32% (об.) включений и имеет плотность 8100, кг/м , микротвердость 4650— 6000 МПа, внутренние напряжения при растяжении 118 МПа [62]. Сцепление данного сплава со сплавами алюминия, нержавеющей сталью и чугуном соответственно 44, 90 и 165 МПа. Сплав заметно начинает окисляться при 650 °С. Уменьшения внутренних напряжений, связанных с включением водорода, можно достигнуть отжигом в течение 1 ч при 300 °С. Некоторые области применения КЭП Со—СгзСг приведены в табл. 20.  [c.186]

Существенными моментами в разработке в СССР проблем износостойкости машин и связанной с этим их долговечности в период после Великой Отечественной войны явились вторая и третья всесоюзные конференции по трению и износу в машинах, проведенные Институтом машиноведения (1949 и 1958 гг.), труды которых опубликованы в семи томах три научно-технических конференции по повышению износостойкости и сроков службы машин, проведенные в Киеве АН УССР и НТО машиностроительной промышленности (1952, 1954 и 1957 гг.), труды которых опубликованы в четырех томах Всесоюзное научно-техническое совеш,ание (1965 г.) по теории трения, теории смазочного действия и новых смазочных материалов, проведенное АН СССР ряд совеш аний по отдельным вопросам проблемы повышения износостойкости, проведенных Институтом машиноведения и издание соответственных сборников докладов. Вопросы износа цилиндров д. в. с. обсуждались на совещании в 1951 г., повышения долговечности машин — в 1953 г., развития теории трения) и изнашивания и повышения износостойкости лемехов —в 1954 г., повышения стойкости деталей машин —в 1956 г., повышения долговечности лемехов тракторных плугов —в 1957 г., применения пластмасс как антифрикционных материалов —в 1959 г., испытания на изнашивание — в 1960 г., определения износа деталей за короткие периоды работы — в 1962 г., испытания на микротвердость в 1963 г., использо вания пластмасс в подшипниках скольжения —в 1963 г.  [c.52]

Нами изучалась эффективность применения кратковременного азотирования для повышения сопротивления коррозионно-усталостному разрушению среднеуглеродистой стали [113]. Исследования проводили на гладких и надрезанных образцах диаметром рабочей части 8 мм при циклическом нагружении чисть1М изгибом при вращении. Азотирование вели в обезвоженном и очищенном аммиаке в течение 7 ч при 550°С и степени диссоциации аммиака около 30 %. При принятых режимах азотирования глубина слоя составляла 45—55 мкм, а микротвердость около 6100 МПа.  [c.171]

На основании полученных результатов исследования микроструктуры и микротвердости зоны сплавления рекомендуется для восстановления блоков цилиндров новый низкотемпературный процесс пайко-сварки ацетилено-кислородным пламенем с применением флюса ФНСН-2 в сочетании с припоем ЛОМНА. Разработанная технология внедряется на предприятиях Ворошиловградского автомобильного управления, Грозненского и Павловского автотранспортных объединений. Кроме этого, внедряется сварка деталей из сплавов алюминия в аргоне.  [c.62]

Указанное решение не должно считаться исчерпывающим, так как процент вероятности может быть доведен до 95 за счет уменьшения путем применения износоустойчивых материалов. К таким материалам в приборостроении следует отнести металлические сплавы Fe, Si, Al, Мп, Zn, Pb и др. Одним из важнейших факторов снижения износа, как показывает формула для определения/г , является микротвердость. Повышение микротвердости, резко снижающее износ, производится методами обкатки и гартовки металла, дающими так называемый наклеп, т. е. поверхностную пленку, вполне обеспечивающую износоустойчивую контактную поверхность.  [c.48]

Применение постоянного тока дает некоторое увеличение глубины упрочнения, а переменный ток повышает микротвердость упрочненного слоя. Повышение твердости можно объяснить пульсацией переменного тока и образованием сегментообразных светлых полей, имеющих большую поверхность контакта с окружающей средой, что приводит к более интенсивной теплоотдаче и, как следствие, к более интенсивной закалке. Повышенная глубина упрочнения постоянным током объясняется более глубоким проникновением высокой температуры.  [c.27]

Благоприятные результаты дает комбинированная обработка (рис. 43). Первый рабочий ход производился без тока, в результате чего были созданы сжимающие напряжения 700 МПа. При повторном рабочем ходе тока силой 350 А обра-еовался поверхностный слой глубиной 0,1 мм с максимальной микротвердостью около 6000 МПа. Сжимающие напряжения располагались на глубине 0,05 мм, а их величина достигала 900 МПа. Сопоставление полученной эпюры остаточных напряжений (см. рис. 43) с соответствующими кривыми на рис. 41 показывает эффективность применения предварительной обработки без тока. Это объясняется не только возможностью предварительного наведения сжимающих напряжений, но и измельчением при этом структуры металла.  [c.64]

Прибор ПМТ-3 может быть применен для определения микротвердости при минусовых температурах (до —55 С). В качестве охлаждающей среды используют охлаждающую жидкость в сочетании с жидким азотом. Этот же метод дает возможность измерять ми-кротвердость и при нагреве интервал измерений от —200 до -j-200 С°.  [c.317]

Наиболее свежими по фактическому содержанию являются четвертая и пятая главы, в которых анализируются структура и свойства компактных наноматериалов. Почти все описанные в них результаты получены после 1988 года. Подавляющее большинство исследований компактных нанокристаллических материалов так или иначе сосредоточены вокруг нескольких проблем. Одна из них — проблема микроструктуры компактных наноматериалов и ее стабильности, состояния межзеренных границ и их релаксации непосредственное изучение микроструктуры проводится различными электронно-микроскопическими, дифракционными и спектроскопическими методами. К этим исследованиям достаточно близки работы по изучению структуры компактных наноматериалов косвенными методами (изучение фононных спектров, температурных зависимостей микротвердости, модулей упругости, электрокинетических свойств, калориметрия). Ожидается, что компактные наноматериалы наибольшее применение найдут в качестве конструкционных и функциональных материалов новых технологий и как магнитные материалы, поэтому в пятой главе особое внимание уделено механическим и магнитным свойствам компактных наноматериалов. Последовательное обсуждение структуры и свойств изолированных наночастиц и компактных наноматериалов должно составить единое представление о современном состоянии исследований этого особого состояния вещества, выявить между изолированными наночастицамй и компактными наноматериаламп общее и особенное.  [c.16]

В процессе травления низкоуглеродистых сталей с целью удаления с них окалины 5 % кислоты расходуется на собственно растворение окалины и 55 % на растворение стали. Считают, что травлении теряется от 2 до 4 % протравливаемой стали, что при годовом производстве в 150 млн. т составляет 4—6 т. Снижение потерь металла при травлении — важнейший резерв экономии. Поэтому травление сталей в серной и соляной кислотах должно осуществляться обязательно с применением ингибиторов. Но не только это диктует необходимость использования ингибиторов. Дело в том, что процесс травления сопровождается обычно побочными явлениями, такими как неравномерность растворения металла, перетравлнвание его (особенно в серной кислоте), что приводит к увеличению микрошероховатости поверхности и, в конечном счете, к снижению качества стали. Неравномерность травления, растравливание поверхности способствует появлению будущих очагов локальных коррозионных процессов. Поглощение металлом выделяющегося при травлении водорода вызывает изменение физико-механических и физико-химических свойств электропроводности, магнитной восприимчивости, микротвердости, пластических и прочностных свойств и т. п. Все эти нежелательные явления могут быть эффективно предотвращены введением в травильные растворы ингибиторов. Большинство ингибиторов разработаны преимущественно для серной кислоты.  [c.101]

Система исследована во всем интервале концентраций. Сплавы изготовляли в дуговой печи с применением заранее приготовленной лигатуры с 24,32 % (ат.) S в атмосфере очищенного гелия с многократным переплавом. В качестве исходных компонентов использовали Re чистотой 99,98 % (по массе) и дистиллированный S чистотой 99,5 % (по массе). Сплавы исследовали методами рентгеноструктурного, микрос-труктурного, дифференциального термического анализов, определением температуры плавления, твердости сплавов, микротвердости структурных составляющих и термо-э.д.с. Фазовый анализ проводили на литых и отожженных в вакууме сплавах при 1600 и 1100 °С с выдержкой 3 и 150 ч соответственно.  [c.121]

Дл1я получения количественных данных может быть применен метод измерения микротвердости специальной аппаратурой, которая дает возможность делать и измерять маленЁкие отпечатки на отдельных зернах в поле зрения микроскопа.  [c.232]


Рапп и Ганеман [122] описали прибор для испытаний микротвердости, который был успешно применен при изучении  [c.233]

Хром. Он находит очень широкое применение в наплавочных сплавах. Следует отметить, что сплавы системы Fe- r практического значения как наплавочные не имеют из-за образования хрупкой а-фазы Fe r и относительно небольшого упрочнения. Наибольшее влияние хрома на эксплуатационные свойства износостойких сплавов проявляется при наличии углерода. Высокий уровень эксплуатационных свойств сплавов Fe- r- обусловлен количеством, размерами, морфологией и микротвердостью карбидов и металлической основы.  [c.157]


Смотреть страницы где упоминается термин Микротвердости Применение : [c.177]    [c.107]    [c.50]    [c.322]    [c.14]   
Справочник по пайке Изд.2 (1984) -- [ c.316 , c.321 ]



ПОИСК



Микротвердость

Микротвердость германиевые — Особенности работы электролитов 2.42, 43 — Применение



© 2025 Mash-xxl.info Реклама на сайте