Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Растяжение метод

Испытания на двухосное растяжение методом гидростатического выпучивания и цилиндрических сосудов под внутренним давлением позволяют оценивать механические характеристики в условиях, наиболее близких к эксплуатационным.  [c.279]

При двухосном растяжении методом гидростатического выпучивания (рис. 5.1, б) в образцах-дисках создается двух-  [c.279]


Рис. 39. Концентрация напряжений при растяжении. Метод цилиндрических сечений Рис. 39. <a href="/info/4882">Концентрация напряжений</a> при растяжении. Метод цилиндрических сечений
На основании этого можно было ожидать, что в указанных пределах изменения безразмерного параметра б приближенные решения позволяют получить данные о напряженном состоянии в зонах конических отверстий с достаточной для инженерных расчетов точностью. Однако, как было отмечено выше, максимальная величина дополнительного радиального давления на поверхности отверстия позволяет судить лишь о порядке погрешности приближенного решения. Для установления действительной величины погрешности решений было проведено экспериментальное исследование распределения напряжений в зоне конического отверстия в пластине, нагруженной равномерным всесторонним растяжением, методом фотоупругости с ирименением замораживания [6]. Модель была изготовлена из оптически чувствительного материала ЭД5-М и нагружалась путем размораживания приклеенного к ней кольца, вырезанного из диска из того же материала, предварительно замороженного при равномерном радиальном сжатии [10].  [c.113]

Программа упругопластического расчета диска на растяжение методом переменных параметров упругости  [c.219]

Испытание пленочных полимерных материалов при динамических знакопеременных нагрузках в условиях двухосного растяжения. Метод является развитием идеи, предложенной и описанной в разделе Vn.l. Схема установки изображена на рис. VH.Il. Сущность метода заключается в следующем. Полимерный образец в виде мембраны круглого сечения зажат по периметру в испытательной ячейке /. С помощью системы газоснабжения, состоящей из баллона 4, редуктора и манометров 2, 3, подается постоянное давление в верхнюю камеру испытательной ячейки, затем в нижней камере испытательной ячейки создается противодавление перепад давления циклически повторяется при помощи клапанов 5 п 6. Число и частота циклов задаются и регистрируются датчиком-счетчиком 7. В верхнюю камеру испытательной ячейки заливают жидкость. Установка позволяет вести исследования в статическом и динамическом режимах испытания.  [c.231]


Метод испытания на растяжение Метод испытания на сжатие  [c.6]

ИСПЫТАНИЯ НА ДВУХОСНОЕ РАСТЯЖЕНИЕ МЕТОДОМ ВЫДАВЛИВАНИЯ  [c.164]

Многие листовые конструкции —= баллоны и сосуды под внутренним давлением, обшивка самолетов и ракет — работают в условиях двухосного растяжения. Для оценки поведения материалов в таких условиях проводят специальные иопытания на двухосное растяжение методом гидравлического или пневматического выдавливания. Квадратный листовой образец закрепляют на опорной плите с круглым или эллиптическим отверстием и выдавливают снизу под давлением жидкости или газа вплоть до разрушения образующегося сферического или эллипсовидного сегмента. В полюсе сегмента создается схема двухосного растяжения симметричного (51=52) в сферическом и несимметричного (51> >5г) — в эллипсовидном.  [c.164]

Растворы, безопасность труда 725 Растяжение метод 630 Реагентный метод регенерации 708 Реверсирование тока 352 Регрессионный анализ 595 Рельеф поверхности  [c.732]

Мы рассмотрели только часть вопросов, которые изучались за истекшее десятилетие с помощью релаксационных испытаний по методу И. А. Одинга. Но даже для этой части вопросов потребовалось провести огромное количество экспериментов понадобилось испытать больше тысячи образцов в течение нескольких тысяч часов каждый. При этом для получения сравнимых данных необходимо было соблюдать для больших партий образцов идентичные температурные и силовые условия. Выполнение этой работы было возможно только благодаря методу И. А. Одинга. Можно без преувеличения сказать, что только благодаря этому методу удалось в сравнительно короткий срок накопить большой фактический материал, который позволил обосновать большинство существующих воззрений на механизм процесса релаксации и влияния на него различных факторов. Поэтому этот метод заслуживает широкого распространения и в дальнейшем. В совокупности с методами испытания на релаксацию в других условиях нагружения, и в первую очередь при растяжении, метод И. А. Одинга можно успешно применять для разработки теории релаксации напряжений в металлах и для оценки релаксационной стойкости материалов. В дальнейшем, когда будет разработан надежный метод корреляции опытных данных, полученных при испытаниях кольцевых образцов на изгиб и цилиндрических образцов на растяжение, метод И. А. Одинга позволит получать непосредственно и количественные значения релаксационных характеристик не только для деталей, работающих на изгиб, но и для деталей, работающих иа растяжение, таких, как болты и шпильки котлов и турбин.  [c.48]

Порядок работы программы. В качестве примера рассмотрим расчет диска на растяжение методом переменных параметров упругости.  [c.386]

Книга соответствует традиционной программе машиностроительных вузов. Излагаются следующие разделы курса сопротивления материалов растяжение, кручение, изгиб, статически неопределимые системы, теория напряженного состояния, теория прочности, толстостенные трубы и тонкостенные оболочки, прочность при переменных напряжениях., расчеты при пластических деформациях, устойчивость и методы испытаний. Даются элементарные сведения пв композиционным материалам.  [c.32]

Основная серия испытаний выполнена на цилиндрических образцах с кольцевым надрезом (рис. 2.20) следующих размеров длина рабочей части 35 мм D = 9,5 мм d = 4,75 мм R = = 0,5 мм а = 45°. Деформированное состояние стали для таких испытаний получали растяжением при комнатной температуре гладких образцов диаметром 10 мм до ео=-6 % Затем из этих образцов вырезали образцы с надрезом (рис. 2.20). Образцы полировали электролитическим методом во избежание инициирования хрупкого разрушения от поверхностных дефектов. Деформирование образцов с надрезом осуществляли растяжением при 7 = —196, —140, —100 и —60 С для стали в исходном состоянии и при Т = —196, —100, —60°С для стали в деформированном состоянии. Определяли максимальную нагрузку Ртах и нагрузку Pf в момент разрыва образца. Диаметр образца до и после испытаний измеряли на микроскопе УИМ-23.  [c.101]

Для сложного напряженного состояния подобный метод оценки прочности непригоден. Дело в том, что для одного и того же материала, как показывают опыты, опасное состояние может наступить при различных предельных значениях главных напряжений Ох, Оз и 03 в зависимости от соотношений между ними. Поэтому экспериментально установить предельные величины главных напряжений очень сложно не только из-за трудности постановки опытов, но и вследствие большого объема испытаний. В случае сложного напряженного состояния конструкции рассчитывают на прочность, как правило, на основании теоретических разработок с использованием данных о механических свойствах материалов, получаемых при испытании на растяжение и сжатие (иногда используют также результаты опытов на кручение). Только в отдельных случаях для оценки прочности конструкции или ее элементов прибегают к моде-  [c.195]


Применив метод сечений, найдем, что в любом поперечном сечении бруса действуют изгибающие моменты Мр = = Рур и Мр = Р2р, а также продольная сила N = Р (рис. 140, б). Нетрудно заметить, что здесь, как и в рассмотренном выше случае, имеет место совместное действие косого изгиба с осевым растяжением (сжатием). А потому формула для определения напряжения в произвольной точке сечения с координатами 2 и у будет аналогична (12.19), т. е.  [c.204]

Исходные положения расчета по тяговой способности. Расчет ремней при этом методе сводится к определению площади поперечного сечения ремня Р из расчета на растяжение (см. формулу (23.11)]. При этом допускаемые напряжения [к] и ряд параметров ременных передач назначают таким образом, чтобы обеспечить оптимальную тяговую способность и усталостную прочность ремня  [c.359]

Отметим два важных свойства механической энергии, которые широко используются в современных методах расчета конструкций при любых деформациях растяжении, кручении, изгибе и т. д.  [c.65]

Для расчета статически неопределимых балок можно применить уже знакомый нам метод, который применялся для решения статически неопределимых задач при растяжении и кручении.  [c.198]

Решение. Прикладываем к грузу силу инерции, равную та = = Оа/ц и направленную вниз. Применим метод сечений. Делаем разрез п — п и отбрасываем верхнюю часть каната. Усилие в канате обозначаем . Так как напряжения при центральном растяжении равномерно распределены по сечению, то можем принять, что Ы = а А, где — ис-  [c.288]

Для определения огибающей чрезвычайно важно знать положение точки С (рис. 300 и 301). Нормальное напряжение в этой точке представляет собой напряжение отрыва при всестороннем растяжении. До сих пор, однако, не существует метода для проведения соответствующего испытания. Вообще не удается осуществить испытание в условиях напряженного состояния, когда все три главных напряжения являются растягивающими (см. подробнее 112). Поэтому пока  [c.266]

В силу указанных обстоятельств наиболее простым и естественным является решение аппроксимировать предельную огибающую касательной к кругам растяжения и сжатия (рис, 301). Понятно, что это не исключает возможности в дальнейшем, когда будут найдены новые методы испытания, уточнить форму огибающей и тем самым более полно отразить особенности поведения материала в условиях, близких к всестороннему растяжению.  [c.267]

Трещины начинают развиваться задолго до полного разрушения при усталостном, пластическом и даже хрупком разрушении. Например, при однократном статическом растяжении гладкого образца момент появления первой трещины частичного разрушения соответствует точке А на диаграмме растяжения (рис. 3.2), причем чем чувствительнее метод де-  [c.115]

Леонардо да Винчи был одним из первых, кто изобрел простейшее устройство для определения механических свойств железных проволок при растяжении. Метод заключался в следующем один конец проволоки жестко закреплялся на перекладине, а ко второму концу прикреплялось ведерко, в которое засыпалась дробь. Метод квазистатического растяжения проволоки путем увеличения количества дроби позволил установить, что короткие проволоки прочнее длинных. Этот принцип испытания, введенный более 500 лет назад, был положен впоследствии для определения механический свойств металла при квазистатическом нагружении. Современные испытательные машины доведены до совершенства, так как оснащены компьютерами и позволяют не только задавать необходимый режим нагружения, но и рассчитывать прочность на разрыв, пластичность и другие свойства деформируемого образца. Для учета реакции металла на внешнее воздействие, зависящей от способа пршгожения нагрузки, были выделены кроме квазистатических испытаний на разрыв, также испытания на удар (ударная вязкость), циклическое нагружение (усталость), статические нагружение (ползучесть) и другие виды.  [c.229]

При использовании жесткой машины наиболее распространен метод скачкообразного изменения скорости растяжения (метод Бэкофена и его модификации). По методу Бэкофена скорость деформации изменяется соответствующим изменением нагрузки F. Однако после изменения нагрузки установившееся течение достигается по прошествии определенного времени. Поэтому непосредственно из диаграмм растяжения значение т определить нельзя. Обычно прибегают к экстраполяции зависимости а=/(е) для получения значений одинаковой степени деформации при разных скоростях растяжения.  [c.553]

Термомеханические испытания материала, которы также можно использовать для оценки теплостойкости являются методически более строгими, поскольку обра зец в таких испытаниях находится не в условиях сложной нагружения, а при одноосном растяжении. Метод Мар тенса и термомеханический метод определения теплостой кости различных типов стеклопластиков рассмотрены i литературе " .  [c.180]

При сварке низкоуглеродистых сталей обычными методами химический состав металла шва, характеризуелп>1й эквивалентным содер/канием углерода Сэш, незначительно отличается от химического состава основного металла, характеризуемого также эквивалептпыл содержанием углерода Сэо- Для тих сталей Сэо 0,21 0,35% и Сэ.ш = 0,20 0,30%. Механические свойства металла шва зависят в основном толы о от скорости его охлаждения и пластических деформаций растяжения, возпикающих в металле шва при его остывахгии.  [c.199]

На кр(гвой растяжения образец до о-ц растягивается равномерно, а начиная с (Тв, — преимущественно сосредоточенно. На этом принципе основаны методы разделения бобщ ка брапн и бсоср (как и при испытании образцов разной длины).  [c.77]

Расчетное исследование НДС образцов из стали 15Х2МФА (рис. 1.4), подвергнутых растяжению в области низких температур, было проведено с целью анализа параметров, характеризующих сопротивление хрупкому разрушению материала [131]. Подробно результаты расчета и эксперимента будут изложены в подразделе 2.1.4. В настоящем разделе мы хотим продемонстрировать работоспособность метода решения упругопластических задач в части учета геометрической нелинейности. Дело в том, что перед разрушением испытанных образцов при Т = —100 и —10°С происходила потеря пластической устойчивости (зависимость нагрузки от перемещений имела максимум). Очевидно, что расчетным путем предсказать потерю несущей способности конструкции можно, решая упругопластическую задачу только в геометрически нелинейной постановке. При численном моделировании нагружение образцов осуществляли перемещением захватного сечения образца от этапа к этапу задавалось малое приращение перемещений [131]. При этом анализировали нагрузку, действующую на образец. Механические свойства стали 15Х2МФА, используемые в расчете, представлены в подразделе 2.1.4. На рис. 1.4 представлены зависимости нагрузки от перемещений захватной части образца. Видно, что соответствие экспериментальных данных с результатами расчета хорошее. Наибольшее отличие расчетной максимальной нагрузки от экспериментальной составляет приблизительно всего 3 % различие в среднеинтегральной деформации при разрушении образца е/ = —1п (1—i j) (i ) — перечное сужение нет-  [c.32]


Оценка коррозии по изменению механических снойстп металла после воз.тейст-Ш1Я на него агрессивной среды имеет значение д,чя соответствующих расчетов при конструировании химической аипарату-р[> . Этот метод широко применяется наряду с массовым методом и при равномерной коррозии. При статическом растяжении образца после коррозионных  [c.341]

Для расчета конструкций с криволинейной характеристикой применим только графический метод. Экспериментальную характеристику Ъс наносят на заготовку (рис. 314, г и д) п через точку п пересечения характеристики с линией Рсж проводят вертикаль до встречи с линией Рраст- Из точки встречи т проводят линию Ьа растяжения болтов под углом а к оси абсцисс и находят (ординату точки Ь).  [c.456]

Для того чтобы определить, на растяжение, кручение или изгиб работает брус, необходимо воспользоваться методом сечений. Так, например, разрезая брус, показанный на рис. 7, а, в сечении АА, определяем из условий равновесия отсеченной части, что в этом сечении возникает только нормальная сила Л = - -Р. Следовательно, здесь имеет место растяжение. В сечении ВВ то10 же бруса возни-кает поперечная илaQ = -7 и изгибающий момент М = - у. Таким  [c.19]

В качестве наиболее простого примера, иллюстрирующего сказанное, рассмотрим стержень с выточкой, представленный на рис. 14, а. Можно показать, что при растяжении такого стержня напряжения в точках А, расположенных у вершины выточки, будут заметно больше, чем для гладкого стержня, растянутого теми же силами (рис. 14, б). Если исходить из метода напряжений, то следует сделать вывод, что стержень с выточкой менее прочен, т. е. способен выдержать нагрузку меньшую, чем гладкий стержень. Однако это не всегда так. Для некоторых материалов, таких, как высокоуглеродистая сталь, стекло, камень и другие им подобные, стержень, имеющий выточку, действительно оказывается менее прочным, чем гладкий стержень. В случае, если оба стери<ня из1-отовлемы из малоуглеродистой стали, меди, бронзы или алюминия, стержень с  [c.27]

Испытание образцов на растяжение и сжатие дает объективную оценку свойств материала. В производстве, однако, для оператив-1Ю10 контроля за качеством изгото1 ляемых деталей этот метод испытания представляет в ряде случаев значительные неудобства. Например, при помощи испытания на растяжение и сжатие трудно контролировать правильность термообработки сотовых изделий. Для такого контроля нужно было бы для каждой партии деталей изготовлять несколько образцов — свидетелей , проходящих все стадии термообработки вместе с деталями, а затем подвергать эти образцы испытанию на растяжение пли сжатие и таким образом определять механические характеристики для готовой партии деталей. Такой прием сильно загружал бы производство и снижал бы оперативность контроля.  [c.68]

Пример 15.11. Методом Релея определить низшую частоту собственных продольных колебаний системы, состоящей из стержня и прпсое-динспыон к нему массы т (рис. 552). Масса стержня — т , длина — I, жесткость на растяжение—ЕР.  [c.486]

При однородном растяжении пластины, изготовленной из оптически активного материала, мы никаких полос вообще не увидим. Будет происходить лишь периодическое затемнение или просветление изображения, когда возникающая деформация проходит через определепиое значение. В муаровом методе такое просветление следом за затемнением будет происходить тогда, когда задана не деформация, а перемещение одной сетки относительно другой ка]с  [c.523]


Смотреть страницы где упоминается термин Растяжение метод : [c.278]    [c.279]    [c.298]    [c.251]    [c.236]    [c.149]    [c.343]    [c.215]    [c.241]    [c.88]    [c.451]    [c.10]    [c.158]    [c.22]    [c.278]   
Гальванотехника справочник (1987) -- [ c.630 ]



ПОИСК





© 2025 Mash-xxl.info Реклама на сайте