Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Микротвердость — Методы исследования

Каждый из перечисленных методов не позволяет осуществить надежный и достаточно полный контроль температур . в зоне трения. Для решения этой задачи необходимо применять комплексный метод исследования тепловых явлений, включающий измерение температуры с применением термопар, металлографический и рентгеноструктурный анализы, измерение микротвердости тонкого поверхностного слоя. Совместный анализ результатов измерений позволит установить связь между температурой нагрева металла, микроструктурой и микротвердостью поверхностного слоя в различных точках поверхности трения и на различных расстояниях от нее.  [c.214]


Методом микротвердости находят твердость микрообъемов покрытия. Основное назначение метода — исследование твердости отдельных частиц, структурных составляющих, а также анизотропии твердости в различных участках покрытия.  [c.27]

Для определения и изучения механических свойств материалов в малых объемах перспективными и порой единственно возможными являются методы исследования твердости, микротвердости, испытания малых образцов на растяжение. Условно эти испытания могут быть отнесены к микромеханическим методам исследования свойств материалов [121, 128, 166, 205]. Развитие методов изучения прочности тугоплавких металлов при температурах, в 2—3 раза превышающих освоенный в испытательной технике уровень (до 1300 К), явилось весьма сложной задачей, решение которой потребовало преодоления больших конструкторских и методических трудностей. Было осуществлено создание комплекса новых специальных высокотемпературных установок повышенной точности, исключающих влияние на испытываемые образцы вредных побочных явлений испарения и окисления материалов, трения в направляющих и в уплотнениях микромашин, нагрева силоизмерительных устройств, вибрации частей установок и здания, а также многих других факторов.  [c.4]

Преимущественное развитие усталостных трещин происходит в поверхностных слоях, что обусловлено более ранним по сравнению с остальным объемом металла повреждением поверхностных слоев из-за более раннего накопления в этих слоях критической плотности дислокаций [83]. Поскольку процесс усталости во всей массе протекает неоднородно, то для изучения изменения свойств в процессе циклического нагружения необходимы характеристики, которые позволяли бы судить о процессах, происходящих в локальных объемах металла. В связи с этим при изучении усталостного разрушения широкое применение нашли методы измерения твердости и микротвердости, рентгеновского анализа, оптической и электронной микроскопии. Результаты этих исследований представляют большой интерес для выявления сходства и различия кинетики накопления структурных повреждений и разрушения в условиях объемного циклического нагружения и при фрик-ционно-контактной усталости, поскольку аналогичные методы исследования широко применяются при трении. Методы интегральной оценки структурных изменений, такие, как измерение электросопротивления (проводимости), внутреннего трения, магнитных свойств, несмотря на то что требуют специальной подготовки образцов и соответственно испытательного оборудования, также могут быть полезны для исследования процессов трения.  [c.33]


Измерения микротвердости (рис, 40) подтверждают периоди ческий характер структурных изменений, а число циклов до разрушения по результатам двух методов исследования согласуется достаточно хорошо (рис. 41).  [c.64]

Главная трудность при количественной оценке структурных изменений и особенно при установлении их количественной связи с интенсивностью износа заключается в выборе методов исследо- вания. Число циклов до разрушения не зависит от метода исследования (толщины исследуемого слоя), а абсолютные значения таких параметров, как микротвердость или ширина дифракционных линий, являются их прямой функцией. Вопрос о слое, ответственном за разрушение в условиях фрикционно-контактного воздействия,  [c.106]

Механический метод исследования кинетики диффузии жидких сред в напряженно-сжатых полимерных материалах достаточно чувствителен и применим для систем, в которых под воздействием среды изменяется поверхностная микротвердость образца.  [c.23]

Применение метода измерения микротвердости в металловедческих исследованиях связано в основном с проблемами оценки свойств и идентификации отдельных фаз и структурных составляющих, имеющих малый объем. Этот метод широко используют при исследо-, вании поверхностных покрытий и слоев, а также влияния различной механической, термической или химико-термической обработки на поверхностные свойства материалов. При изу-  [c.31]

Механический метод исследования диффузии жидкостей и паров через полимеры в напряженно-сжатом состоянии. Метод изучения кинетики диффузионных процессов жидких и парообразных сред в напряженно-сжатых образцах основан на регистрации изменения механических свойств (поверхностной микротвердости) полимера при взаимодействии со средой (см. ГОСТ 18059—72) 145 ].  [c.200]

Механический метод исследования кинетики диффузии жидких сред в напряженно-сжатых полимерных материалах достаточно чувствителен и применим для систем, в которых под воздействием среды изменяется поверхностная микротвердость образца. Недостатками метода являются невозможность количественной оценки диффундирующих веществ и трудоемкость эксперимента.  [c.204]

Значительно более удобным является другой метод исследования заданного участка [126]. Металлографически подготовленный образец исследуют в обычном металлографическом микроскопе для выбора нужного участка. Выбранный участок обводят кольцевой риской с помощью алмазного метчика, устанавливаемого вместо объектива микроскопа. После этого следует более тщательная разметка шлифа на приборе для определения микротвердости путем, например, расположения уколов по кресту вокруг выбранного участка.  [c.119]

Основным методом исследования процесса контактного взаимодействия при этом был металлографический анализ зоны взаимодействия и измерение микротвердости фаз. В некоторых случаях использовали также химический спектральный и рентгеновский анализ. Полученные в работе [51] данные представлены в табл. 23.  [c.46]

Методы исследования поверхностных слоев. Для определения глубины и общей характеристики поверхностных слоев необработанных заготовок и при грубых методах механической обработки пользуются обычным методом исследования микрошлифов. Микротвердость поверхностных  [c.181]

Под влиянием температуры в металлах происходят структурные превращения и изменяется микротвердость. Это явление используется в методе исследования температурного поля по изменению микроструктуры [36].  [c.61]

Для определения глубины и общей характеристики поверхностных слоев необработанных заготовок, а также после предварительной и чистовой обработки резанием используют метод исследования микрошлифов. Микротвердость поверхностных слоев исследуют методом вдавливания алмазной пирамиды на приборе ПМТ-3. Наиболее удобно исследовать глубину поверхностного слоя и изменение его микротвердости по мере удаления от поверхности по микрошлифу, выполненному в виде косого среза под углом а = 0°30 - --f- 2° (рис. 51). Глубина наклепанного слоя h = I tga.  [c.133]


Иногда примеси, наоборот, способствуют увеличению коэффициента диффузии. Поэтому при пайке, когда основной металл и припой являются, как правило, многокомпонентными сплавами, в которых отдельные металлы могут образовывать друг с другом твердые растворы, эвтектические смеси и интерметаллические соединения, диффузия одновременно протекает в нескольких фазах, и коэффициенты диффузии отдельных компонентов в разных условиях будут иметь различное значение, которое трудно оценить на основе коэффициентов диффузии чистых металлов. В этом случае для оценки характера и скорости диффузии бывает достаточно определить глубину диффузионного слоя. Наиболее удобным для этой цели является метод измерения микротвердости. Этот метод наиболее доступен и поэтому широко применяется при исследовании паяных швов.  [c.100]

Выбор методов исследования сварных соединений при диффузионной сварке определяется спецификой изучаемых явлений и состоянием современных методик. Методы, нашедшие широкое практическое применение для исследования диффузионных соединений металлографическое и электронно-микроскопическое исследование спектральный, микрорентгеноспектральный и рентгеноструктурный анализы метод радиоактивных индикаторов измерение микротвердости определение механических свойств при низких и высоких температурах испытания на длительную прочность и ползучесть соединения исследования термостойкости и коррозионной стойкости соединения и др. Одно из основных требований, предъявляемых к применяемым методам, — локальность. Для получения достоверной картины диффузионной зоны необходимо применение нескольких способов исследований.  [c.33]

Микротвердость — Методы исследования 34  [c.268]

Исследовательские испытания на износ включают обычно металлографические исследования тонких поверхностных слоев для оценки структурных превращений под влиянием сил трения и тепла Б зоне контакта. При этом применяются специальные приемы, например метод косого среза, для выявления переходных зон поверхностного слоя. Исследуется также микротвердость структурных составляющих, механические характеристики материала, его теплофизические свойства, геометрия поверхностного слоя (шероховатость, волнистость), его напряженное состояние и другие характеристики.  [c.488]

Группу Определение механических свойств покрытий составляют методы оценки упругих, прочностных и пластических свойств. Из четырех известных констант упругости для покрытий обычно определяются модуль Юнга и коэффициент Пуассона. Публикаций об экспериментальном исследовании других констант упругости покрытий — модуле объемной упругости и модуле сдвига, по-видимому, нет. Неясным остается вопрос о влиянии пористости на модуль упругости. Одной из самых распространенных и наиболее легко оцениваемых характеристик покрытий является микротвердость. Методика определения микротвердости, обладая несомненными достоинствами (неразрушающее испытание, оперативность измерения, простота и доступность оборудования и т. д.), в то же время дает большое количество информации. Когезионная прочность покрытий (чаще всего, предел прочности) исследуется в продольном и поперечном направлении. Слоистая структура покрытий и резко выраженная анизотропия свойств обусловливают большой разброс результатов измерений прочности. Пластические свойства, по-видимому, могут быть определены только для металлических низкопрочных покрытий.  [c.17]

При определении твердости повреждение индентора при внедрении его в испытуемый материал существенно влияет на получаемые результаты. В случае исследования материалов методом микротвердости к индентору предъявляются повышенные требования, так как погрешности, вызываемые его незначительным повреждением, существенно возрастают.  [c.51]

Для изучения механических свойств материалов методом микротвердости при различных видах теплового и силового нагружения разработана установка УМТ-2, позволяющая проводить комплексное исследование характеристик прочности в широком интервале температур [148, 150]. В установке образец с помощью специального механизма подвергается нагружению растяжением — сжатием при различных температурах, в процессе которого производится снятие диаграммы деформирования, определение свойств материалов в микрообъемах методом микротвердости и наблюдение за изменением в структуре посредством оптической системы.  [c.96]

ИССЛЕДОВАНИЕ МЕТАЛЛИЧЕСКИХ СТРУКТУР МЕТОДОМ МИКРОТВЕРДОСТИ  [c.236]

Дальнейшие исследования показали, что метод микротвердости очень чувствителен и позволяет получить данные  [c.237]

С развитием атомной энергетики одним из наиболее важных является вопрос о том, какое влияние оказывает облучение на свойства различных металлов и сплавов. Облучение металлов ядерными частицами создает дефекты в кристаллической решетке, что ведет к значительному изменению физических и механических свойств материалов, однако природа и механизм образования этих дефектов пока еще однозначно не установлены. Очень плодотворным здесь оказалось применение метода микротвердости. При этом условия проведения испытаний не позволяют исследователю непосредственно наблюдать микроструктуру образца. В настоящее время ведутся обширные работы [20—22, 31—37] по исследованию микроструктуры и физико-химических свойств материалов под действием нейтронного облучения.  [c.238]


Все эти и подобные исследования проводились на приборе ПМТ-3. Из-за отсутствия специальной аппаратуры, которая позволила бы провести измерения непосредственно в процессе облучения, образцы сначала облучались, затем выдерживались определенное время, чтобы уменьшилась наведенная радиоактивность, и только тогда делались измерения. Такая выдержка длилась иногда до трех лет [35]. При исследованиях не учитывалась возможность изменения физических и механических свойств в результате высвечивания материалов, поскольку зависимость между изменениями свойств материалов и временем высвечивания практически невозможно было установить. В настоящее время однозначных результатов по влиянию облучения на физико-механические свойства металлов не имеется. Это связано с неоднозначными условиями эксперимента и после одинаковых доз облучения измерения микротвердости проводятся по истечении длительного времени, при этом процессы старения и релаксации напряжений совершенно не могут быть учтены. В этих условиях важное значение приобретают измерения непосредственно в процессе облучения. Такого рода работы побуждали к поискам новых методов и средств, которые позволили бы вести исследования в агрессивных средах.  [c.240]

Многие авторы применяли метод микротвердости для изучения растворимости металлов или при несущественном изменении параметра решетки. С изменением концентрации твердого раствора В. М. Глазов и В. Н. Вигдарович [26] изучали предельную растворимость ряда переходных металлов Zr, Та, Nb и других в алюминии с применением метода микротвердости. В результате исследований установлена зависимость микротвердости кристаллов твердого раствора от состава сплавов Zr—А1, Та—А1, Nb—А1 и др., закаленных после отжига при различных температурах, и построены кривые предельной растворимости Zr, Та, Nb в алюминии.  [c.237]

Характер структурных изменений в более тонких поверхностных слоях исследовался методом измерения микротвердости. Метод измерения микротвердости является аффективным и наиболее распространенным способом оценки состояния поверхностных слоев материалов при трении. При сопоставлении его результатов с результатами других методов исследования, например рентгеновского анализа, следует иметь в виду, что между ними возможно и сходство [87, 88], и различие [24]. Сходство обусловлено тем, что микротвердость, как и ширина дифракционных линий, находится в линейной связи с величиной блоков и микронапряжений. Различие может быть результатом несоответствия толщины слоев, исследуемых обоими методами. Кроме того, при исследовании многофазных материалов возможно различие в ловедении той фазы, которая исследуется рентгенографически, и всего материала в целом, если микротвердость характеризует его среднеагрегатное состояние.  [c.59]

Таким образом, метод исследования структурных изменений и замер микротвердости поверхностных слоев лунки износа шаров после испытаний масел с разными присадками позволил приближенно определить температуру поверхностных слоев и выявить различие в поведении противозадирных присадок. Существо различия заключается в том, что большинство серных присадок значительно снижает температуру поверхностей трения, а хлорные являются противосварочными.  [c.170]

Установка позволяла производить как определение выхода по току, так и снятие патяризационных кривых компенсационным методом. Полученные осадки исследовались металлографическим и рентгенографическим методами наряду с определением их микротвердости. При сравнительных исследованиях стандартной ванны с ваннами, содержащими комбинированные добавки анионов, для определений выхода по току, помимо методики весовой кулонометрии, применялась методика газового анализа, с газовым кулонометром.  [c.64]

Данные работ [2] и [3] не согласуются между собой и не были подтверждены в, исследованиях [4, 5], выполненных методами рентгеновского [4], дифференциального термического и микроструктурного [5] анализов и измерением магнитной восприимчивости и микротвердости [5]. Эти исследования подтвердили данные [1] о существовании соединения Мпз1п и о характере диаграммы состояния системы In —Мп. Согласно  [c.350]

Исследование качественных изменений в стали нри усталостных испытаниях в присутствии адсорбционно- и коррозионно-активных сред проводилось в трех направлениях 1) микроскопические исследования трещин усталости, упрочнения либо разупрочнения методом определения микротвердости 2) механическое исследование изменения статической прочности стали [66] 3) исследование влияния тренировки в воздухе и в иоверхно-стно-активпой среде на предел выносливости стали.  [c.143]

С использованием методов растровой электронной микроскопии, метода скользящего пучка рентгеновских лучей и измерения микротвердости исследованы процессы самоорганизации дислокационной и субаереиной структуры в приповерхностных слоях и внутренних объемах технически чистого рекристаллизованного Мо при статическом растяжении и влияние магнетроиного покрытия Мо-45, 8Re-0,017 на особенности протекания этих процессов вблизи поверхности. Исследования проводили на образцах, растянутых до деформаций, соответствующих пределу пропорциональности, нижнему пределу текучести н пределу прочности.  [c.185]

Исследование образцов с барьерныдг слоем методом локального рентгепоспектрального анализа показало, что легирующие элементы сплава (Сг, 81, Т1, А1) находятся в переходной зоне сплав— никель, а в слое никель—палладий они отсутствуют, в связи с чем кремний не восстанавливается из стеклосвязки. Микротвердость этого слоя снижается до 90—100 кгс/мм (см. таблицу, образец 2).  [c.63]

Комплексное исследование материалов в микрообъемах предполагает также наряду с определением микротвердости изучение его структуры при температуре испытания. Кроме того, исходя из разделения на агрегатную и монокристал-лическую твердость, характеризующие различные свойства материалов и определяемые методом микротвердости, необходимо прицельное внедрение индентора в выбранную зону под микроскопом. При определении монокристалли-ческой твердости отпечаток согласно методике эксперимента должен не выходить за пределы исследуемого микрообъекта, а при определении агрегатной твердости — охватывать определенное количество структурных составляющих материала. При исследовании неоднородных материалов необходим выбор зоны внедрения.  [c.69]

Для создания универсальных установок с более высокой рабочей температурой исследования прочности тугоплавких материалов [37, 39, 150] сделаны новые разработки [43, 44, 45, 96, 101, 148], а также использованы идеи и конструкторские решения, реализованные и проверенные в специализированных установках [8, 27, 28, 143, 147, 160]. В результате разработаны универсальные высокоточные установки для иследования прочности [37, 39, 150], которые сочетают в себе преимущества комплексного использования методов растяжения — сжатия, измерения микротвердости и тепловой микроскопии, обладают большими возможностями изучения широкого круга разных матери-  [c.95]

Более широкими возможностями обладает разработанная нами универсальная установка Микрат-4 [37, 39, 41, 96], на которой исследования кратковременной и длительной прочности материалов проводят методами растяжения — сжатия при исследовании микротвердости и тепловой микро-  [c.98]

Григорович В. К. Исследование анизотропии упругопластической деформации и разрушения металлов и ковалентных кристаллов методом микротвердости.— В кн. Четвертое Всесоюз. науч.-техн совещ. по микротвердости Тез. докл. М., 1972, с. 44—45.  [c.196]


Вместе с тем, как отмечалось выше, сушествуют нерешенные проблемы в получении таких наноматериалов традиционными методами — газовой конденсацией или шаровым размолом в связи с сохранением в них при компактировании некоторой остаточной пористости и дополнительными трудностями при приготовлении массивных образцов [1, 2, 4]. Как результат, до недавнего времени были выполнены лишь единичные работы по исследованию механических свойств наноструктурных металлов и сплавов, имеющих размер зерен около 100 нм и менее. Большинство проведенных исследований связано с измерениями микротвердости, и полученные данные весьма противоречивы. Например, в некоторых работах [320, 321] обнаружено разупрочнение при уменьшении зерен до нанометрических размеров, в то же время в ряде других работ [322, 323] наблюдали в этом случае упрочнение, хотя наклон кривых был меньше по сравнению с соотношением Холла-Петча.  [c.182]

Основное преимущество применения метода микротвердости в металловедении — возможность изучения свойств малых объемов материалов, например отдельных фаз и структурных составляющих металлических сплавов. В настоящее время имеется больщое количество работ по исследованию методом микротвердости структур металлов, в частности, облученных нейтронами. В данной работе сделана попытка кратко обобщить результаты, относящиеся к этому вопросу.  [c.236]

Использование малых нагрузок на индентор (1—200 г), а следовательно, и получение микроскопических отпечаткоз позволило применить метод микротвердости для исследования металлов в следующих направлениях  [c.236]

Так, Е. А. Марковский, М. М. Краснощеков, Н. М. Коче-гура i[31] проводили исследования влияния нейтронного облучения на прочностные хара14теристики конструкционные материалов методом микротвердости. В процессе облучения твердость вначале падает, а после облучения потоком 10 — 10 нейтр/см начинает возрастать. Таким образом, при облучении отожженных железоуглеродистых сплавов малыми дозами наблюдается их разупрочнение, которое с увеличением дозы облучения сменяется упрочнением. Результаты измерений микротвердости стали (С = 0,49) представлены на рис. 1.  [c.238]


Смотреть страницы где упоминается термин Микротвердость — Методы исследования : [c.107]    [c.320]    [c.251]    [c.19]    [c.214]    [c.80]    [c.114]    [c.195]    [c.194]   
Диффузионная сварка материалов (1981) -- [ c.34 ]



ПОИСК



Методы исследования

Микротвердость



© 2025 Mash-xxl.info Реклама на сайте