Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Ядерная энергетика

Книга рассчитана на специалистов в области ядерной энергетики.  [c.2]

В течение последних 30 лет в ядерную энергетику были вложены огромные средства, однако лишь недавно были начаты работы по стандартизации технологии производства термопар для обслуживания ядерных реакторов. Подробности всесторонней дискуссии по вопросам термометрии в ядерных реакторах приведены в работах [49, 56]. Вопросы стабильности термопар в присутствии потока нейтронов оказались тесно связанными с недостаточным контролем при производстве самих термопар.  [c.295]


В ядерной энергетике чаще всего применяются термопары двух типов, оба с неорганической изоляцией термопары типа К, используемые до температур 1100°С, и вольфрам-рениевые термопары. Последние имеют состав либо Ш — 5 % Ке/Ш— 26 % Re, либо W —3 % Ке/и — 25 % Ке и применяются до 2000°С [25]. Теперь стало ясно, что загрязнения в процессе производства являются одной из важнейших причин повреждений и смещения характеристик при высоких температурах. В частности, очень важна чистота огнеупорных материалов не только в их толще, но и на поверхности. Бомбардировка нейтронами оказывает сильное влияние на превращение элементов материалов термопары и приводит к изменению состава в области температурного градиента, что очень трудно учесть. Таким образом, показания термопары оказываются сильно зависящими от взаимного расположения градиента температуры и градиента концентрации.  [c.295]

Ядерная энергетика 332 Ядерные реакции 329  [c.365]

Ядерная физика — крупный раздел современной физики, который изучает специфические формы материи и движения, а именно атомные ядра и ядерные процессы, элементарные частицы и их взаимопревращения. Ядерная физика является научной основой современной ядерной энергетики и ядерной техники.  [c.7]

Внедрение ядерных реакторов на транспорте сопряжено с преодолением больших трудностей. По-видимому, развитие ядерной энергетики пойдет по пути создания стационарных АЭС, а электрический ток от них будет использоваться на транспорте.  [c.323]

Пути развития ядерной энергетики в каждой стране зависят от ее технических и экономических возможностей.  [c.323]

Ядерная энергетика имеет ряд неоспоримых преимуществ.  [c.323]

Метод радиоактивных индикаторов основан на избирательной растворимости солей, которые содержат радиоактивные нуклиды в жидкой и паровой фазах. Так как растворимость солей в паровой фазе много меньше, чем в жидкости, то по активности среды можно определять паросодержание. Если в изучаемой среде содержится недостаточное количество естественных нуклидов, то их можно вносить искусственным путем. Этот метод с успехом применяется в ядерной энергетике для определения паросодержания теплоносителя в реакторе и магистралях по излучению изотопа °К-  [c.241]

В круг значимых внешних воздействий также следует отнести и радиационное облучение элементов атомных энергетических установок. Из всех компонентов облучения наибольшей повреждающей способностью обладает нейтронный поток. В числе последствий радиационного облучения укажем, прежде всего, на уменьшение характеристик пластичности. Одновременно снижается трещиностойкость материала. Именно это обстоятельство определяет одну из важнейших проблем современной ядерной энергетики, решать которую надлежит путем создания новых сталей и сплавов.  [c.64]


Таким образом, при низких энергиях сечение экзотермической реакции растет, как 1/и . Это исключительно важный для нейтронной физики и ядерной энергетики закон I/o (Э. Ферми, 1935), объясняющий, почему нужные реакции в ядерных реакторах  [c.130]

В ядерной энергетике в основном приходится иметь дело с нейтронами, обладающими энергиями примерно от 0,025 эВ до 10 МэВ. Из теории ядерных реакций мы знаем, что сечения взаимодействий нейтронов с ядрами в среднем резко растут по закону 1/с/ при уменьшении энергии нейтрона. По этому свойству нейтроны разделяются на две большие группы — медленных и быстрых нейтронов. Граница между этими группами не является строго определенной. Она лежит примерно в области 1000 эВ. Медленные нейтроны сильно взаимодействуют с ядрами. Для быстрых нейтронов это взаимодействие значительно слабее. Заметим, что медленность медленных нейтронов весьма относительна. Даже нейтрон с энергией 0,025 эВ имеет, как нетрудно подсчитать, скорость 2 км/с.  [c.532]

Глава XI ЯДЕРНАЯ энергетика  [c.561]

Прежде всего, для того чтобы размножение происходило, необходимо, чтобы при реакции деления (п, f) в достаточном количестве выделялись нейтроны. Поэтому первой величиной, определяющей коз (или к), является среднее число v нейтронов, испускаемых в одном акте деления. Число v зависит от вида горючего и от энергии падающего нейтрона. В табл. 11.1 приведены значения v основных изотопов ядерной энергетики как для тепловых, так и для быстрых Е = 1 МэБ) нейтронов.  [c.566]

Размеры блоков замедлителя и урана ограничены сверху тем, что расстояние от любой точки блока до его границы в уране должно быть меньше длины замедления УЧ, а в замедлителе—меньше длины диффузии L (см. гл. X, 4). Реально оказывается, что при оптимальном подборе блоков в гетерогенной среде реакцию осуществлять легче, чем в гомогенной, так как выигрыш за счет увеличения р с избытком компенсирует проигрыш за счет уменьшения /. Так, на естественной смеси изотопов урана гомогенную цепную реакцию можно осуществить только с самым высококачественным замедлителем — тяжелой водой. Но гетерогенная реакция на естественной смеси возможна и при использовании менее качественного замедлителя — графита, от факт сыграл решающую роль в возникновении ядерной энергетики, так как впервые управляемая реакция деления была осуществлена именно в уран-графитовой гетерогенной системе (Э. Ферми с сотр., 1942 И. В. Курчатов с сотр., 1946).  [c.575]

В промышленности очень широко применяются термопары в герметичном металлическом чехле. Такая конструкция необходима для стандартных термопар, которые могут быть повреждены механически или агрессивными веществами. Термопары из сплава платины с 13 % родия, помещенные в чехол из сплава 10 % родия с платиной, применяются в производстве стекла, а термопары из хромеля с алюмелем, помещенные в инконелевый чехол, — в авиационной промышленности. В ядерной энергетике до температуры 1100°С применяются стандартные термопары вольфрам-рений, помещенные в молибденовый чехол. Выдвигаемые промышленностью требования повышения точности и долговременной стабильности термопар стимулировали ряд исследований физических и химических процессов, происходящих внутри герметичного чехла термопары. Такая конструкция часто называется термопарой с неорганической изоляцией (М1).  [c.266]

Термопары вольфрам-рений успешно используются в инертном газе высокой чистоты, в водороде, а также в вакууме с ограничениями, указанными выше. Для стабилизации размеров зерна рекомендуется предвари тельный отжиг новой термопарной проволоки. Это делается в инертной атмосфере при температуре 2100 °С в течение от одного часа для и — 3 % Не до нескольких минут для У — 25% Не. Такая процедура отжига снижает также скорость образования интерметаллической о-фазы в сплаве Ш — 25% Не, которая в противном случае выпадает в части проволоки, находящейся длительное время при температурах от 800 до 1300 °С. Градуировочная таблица зависимости термо-э.д.с. от температуры была предложена [2], но пока формально не утверждена. Одно из важных применений термопар водвф-рам-рений будет рассмотрено ниже и состоит в измерении температур в ядерной энергетике в присутствии потока нейтронов.  [c.292]


Успехи, достигнутые в коррозионной науке и технике машиностроения с момента выхода первого издания, требуют обновления большинства глав настояш,ей книги. Детально рассмотрены введенное недавно понятие критического потенциала ииттингообразования и его применение на практике. Соответствующее место отводится также критическому потенциалу коррозионного растрескивания под напряжением и более подробному обзору различных подходов к изучению механизма этого вида коррозии. Раздел по коррозионной усталости написан о учетом новых данных и их интерпретации. В главу по пассивности включены результаты новых интересных экспериментов, проведенных в ряде лабораторий. Освещение вопросов межкристаллитной коррозии несенсибилизированных нержавеющих сталей и сплавов представляет интерес для ядерной энергетики. Книга включает лишь краткое описание диаграмм Пурбе в связи с тем, что подробный атлас таких диаграмм был опубликован профессором Пурбе в 1966 г.  [c.13]

Технический цирконий, применяемый преимущественно в качестве коррозионностойкого материала в химической промышленности [45], содержит до 2,5 % гафния, который трудно поддается отделению из-за сходства химических свойств циркония и гафния. Эта примесь не оказывает заметного влияния на коррозионные свойства циркония. Чистый металл с малым содержанием гафния (< 0,02 %) обладает малым ахватом тепловых нейтронов, что делает его особенно пригодным мя использования в ядерной энергетике.  [c.379]

Ультразвуковая толщинометрия (УЗТ) в настоящее время широко применяется при измерении толщины разнообразных объектов как при изготовлении, так и при их освидетельствовании. Однако, до настоящего времени в России не создано Государственного стандарта, определяющего основные требования к методике проведения таких работ и оценке полученных результатов. Наиболее полно и на современном уровне вопросы УЗТ отражены в ПНАЭГ-7-031 унифицированных методик контроля, действующих в ядерной энергетике.  [c.199]

Но и это не решит полностью все энергетические проблемы. Если ядерная энергетика снимает с повестки дня борьбу с загрязнением атмосферы продуктами сгорания, то вместе с тем она создает новые проблемы удаление радиоактивных отходов, обеспечение безаварийной работы реакторов, опасность так называемого теплового загрязнения. В этом свете чрезвычайно актуальной становится задача, связанная с ишользованием постоянно действующих источников энергии, одним из которых является солнечное излучение.  [c.6]

Физические основы ядерной энергетики и техники. Исследуются физические условия а) протекания контролируемой цепной реакции деления ядер и б) протекания управляемых термоядерных реакций синтеза. Изучаются вопросы нейтроь 1 Ой физики и физики действия реакторов. Сюда же относятся физические основы mhoi o-численных вопросов ядерной техники (обращение с радиоактивными материалами и отходами производства, вопросы дозиметрии и защиты от излучения и др.).  [c.9]

Основным видом ядерного гор[рчего в настоящее время является уран и отчасти торий. В 1957—1958 гг. в мире (без СССР) добывалось ежегодно по 30 тыс. т урана, в пересчете на металлический уран. Добыча урана в 1959 г. — 39,5 тыс. т, в 1960 г. — 37 тыс. т, в 1961 г.— 33 тыс. т и в 1962 г.— 35 тыс. т. Ядерная энергетика  [c.321]

В последние двадцать лет началось практическое использование новых энергетических ресурсов, а именно энергии, освобождаемой при превращениях атомных ядер. Сейчас за счет ядерных ресурсов покрывается менее 1 % мирового потребления энергии. Однако целесообразность и преимущества этого нового источника энергии настолько очевидны, что позволяют с увренностью предсказать быстрый рост ядерной энергетики при этом будут использованы ядерные реакторы различных типов, в первую очередь на медленных нейтронах. Более отдаленной представляется перспектива использования энергии термоядерного синтеза легких элементов, которая полностью снимет угрозу исчерпания энергетических ресурсов.  [c.514]

Стандарт КАМАК (САМАС) разработан в 1969 г. представителями ряда лабораторий Евроатома под руководством Европейского комитета по стандартизации в ядерной энергетике.  [c.333]

ОТ Прежнего, так как в нем используются преимущества решений, развитых ранее только для аналитических фуикний. Дано подробное изложение новых решений для эллиптического отверстия, которые важны в современной механике разрушения (теории трещин). Исследование осесимметричных напряжений в главе 12 упрощено, и добавлены новые разделы, в которых более приближенный анализ случая разрезанного кольца как одного витка спиральной пружины заменен более точной теорией. В силу значительного роста приложений, например в ядерной энергетике, глава 13 Температурные напрям ения расширена за счет включения термоупругой теоремы взаимности и полученных из нее нескольких полезных результатов. Кроме того, исследование двумерных задач дополнено двумя заключительными параграфами, последний из которых устанавливает взаимосвязь двумерных задач термоупругости с комплексными потенциалами и методами Н. И. Мусхелишвили из главы 6, В главе 14, посвященной распространению волн, перестройка изложения придала больше значения основам трехмерной теории. Добавлено также решение для действия взрывного давления в сферической полости. Приложение, посвященное численно.му методу конечных разностей, включает пример использования ЭВМ для решения задачи с большим числом неизвестных.  [c.13]

Прежде всего среди огромного многообразия экзотермических ядерных реакций очень трудно найти такую, которую можно, хотя бы в принципе, рассматривать как пригодную для ядерной энергетики. Как мы убедимся в этом параграфе, до сих пор удалось найти только три типа таких реакций деление тяжелых ядер нейтронами, реакции синтеза легчайших ядер и экзотермические реакции расщепления легчайших ядер.  [c.561]


Экзотермичность реакции — необходимое, но далеко не достаточное условие возможности ее использования в ядерной энергетике. Должны быть выполнены еще два общих требования  [c.562]

Три водо-водяных реактора мощностью по 90 МВт (здесь и дальше для энергетических реакторов приводится мощность вырабатываемой электроэнергии) установлены на ледоколе Ленин . Реакторы этого типа (мощностью 210, 365, 440, 440 МВт) установлены на Ново-Воронежской АЭС. Водо-водяные реакторы положены в основу ядерной энергетики США, где построено более сотни таких АЭС. Имеются оценки, показывающие, что стоимость электроэнергии на водо-водяных АЭС может быть сделана не более высокой, чем на обычных тепловых электростанциях. В Англии в основу ядерной энергетики положены газо-графитовые реакторы. Там уже действуют десятки таких АЭС.  [c.584]

Энергетические реакторы-размножители должны стать главным направлением в развитии ядерной энергетики в Советском Союзе. Существенный вклад в разработку физических основ быстрых реакторов был сделан И. И. Бондаренко, О. Д. Казачковским, А. И. Лейпунским и Л. Н. Усачевым.  [c.587]


Смотреть страницы где упоминается термин Ядерная энергетика : [c.536]    [c.537]    [c.562]    [c.564]    [c.566]    [c.568]    [c.572]    [c.574]    [c.576]    [c.578]    [c.580]    [c.582]    [c.584]    [c.586]    [c.587]    [c.588]    [c.590]    [c.592]    [c.594]    [c.273]   
Смотреть главы в:

Ядерная физика  -> Ядерная энергетика


Физика. Справочные материалы (1991) -- [ c.332 ]



ПОИСК



Необходимость замкнутого ЯТЦ в ядерной энергетике

Особенности и направления использования ядерной энергии в энергетике

Перспективы развития ядерной энергетики

Политика в отношении ядерной энергетики

Приложение Г. Предложение по использованию мощного тяжелоионного драйвера для построения ядерной энергетики деления с инерционным удержанием. Кошкарев

РЕАКТОРЫ И ПАРОГЕНЕРАТОРЫ Современное состояние ядерной энергетики, перспективы и тенденции развития

РЕАКЦИИ СИНТЕЗА В ЯДЕРНОЙ ЭНЕРГЕТИКЕ. ОСОБЕННОСТИ ТЕРМОЯДЕРНОЙ ЭНЕРГЕТИКИ

Режимы перегрузок ядерного топлива. Переходный период работы Ядерно-топливиые циклы в ядериой энергетике

Свойства изотопов некоторых элементов, применяемых в ядерной энергетике

Стюарт Р. В. Криогенные жидкости в ядерной энергетике

Теплоносители и замедлители ядерных реакторов. Основное назначение атомной энергетики

Энергетика

ЯДЕРНАЯ ЭНЕРГЕТИКА Электропередачи высокого напряжения

ЯТЦ ядерной энергетики с реакторами-размножителями на быстрых нейтронах

Ядерная энергия —основа энергетики будущего



© 2025 Mash-xxl.info Реклама на сайте