Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Поля физических свойств

Критерий Фурье Fo = ах]/1 имеет смысл обобщенного времени. Поэтому его называют числом тепловой гомохронности (однородности по времени если для двух систем отношение (/ /а) одинаково, то для них гомохронность переходит в синхронность). Критерий Fo характеризует связь между скоростью изменения температурного поля, физическими свойствами и размерами тела.  [c.175]

Следовательно, гидродинамическое подобие будет иметь место, если будут подобны поля скоростей и поля физических свойств жидкостей. В случае конвективной теплоотдачи для теплового подобия двух потоков, протекающих в каналах, изображенных на рис. 12-4, необходимо, кроме соблюдения геометрического подобия, также соблюдение подобия полей скорости и физических свойств жидкостей (плотности, вязкости и других), кроме того, еще подобия температурных полей.  [c.160]


Ширина полосы пропускания и равномерность АЧХ являются важными характеристиками пьезопреобразователей. Чем шире полоса пропускания, тем выше разрешающая способность УЗ-приборов, меньше мертвая зона, ниже погрешность определения толщины изделия, координат, скорости ультразвука. Для некоторых приборов, например ультразвуковых спектроскопов, широкая и равномерная полоса пропускания частот преобразователей является определяющим фактором качества контроля. Анализ работы преобразователей с плоскопараллельными пьезоэлементами и слоями показывает, что для них характерны ограниченная, весьма узкая полоса пропускания и продолжительный переходный процесс. Это обусловлено в основном двумя причинами многократными отражениями УЗ-колебаний в конструктивных элементах преобразователя и наличием ярко выраженных резонансных свойств пьезоэлемента. С целью расширения полосы пропускания следует применять преобразователи с неоднородным электрическим полем, физические свойства пьезоэлементов которых изменяются по толщине.  [c.161]

Поля физических свойств 26 Потенциал химический 7 Прандтля число 28  [c.235]

Кроме условий, вытекающих из уравнений движения частицы и потока и гео.метрического подобия модели образцу, необходимо еще обеспечить подобие условий однозначности и подобие полей физических свойств среды.  [c.137]

Подобие полей физических свойств для изотермических процессов реализуется автоматически. Что же касается процессов  [c.137]

Трудность (а во многих случаях и невозможность) осуществления в модели на всех участках подобных образцу температурных полей и полей физических свойств, обходится за счет осуществления в модели локального теплового подобия, т. е. подобия в отдельных местах модели.  [c.156]

Характеризует связь между скоростью изменения температурного поля физическими свойствами и размерами тела  [c.66]

В книге проанализированы энергетические воздействия на калориметрическую систему и получение зависимостей между параметрами температурного поля, физическими свойствами отдельных элементов, входящих в систему, при различных условиях теплообмена и взаимосвязь между показаниями термоприемника, условиями его теплообмена с внешней средой и калориметром и реальной измеряемой температурой.  [c.4]


Следовательно, гидродинамическое подобие будет иметь место, если будут подобны поля скоростей и поля физических свойств жидкостей. В случае конвективной теплоотдачи для теплового подобия двух потоков, протекающих в каналах, изображенных на рис. 12-5, 13  [c.195]

Интенсивность кавитации, скорость и характер акустических течений, величина радиационного давления, амплитуды колебаний самой детали зависят от частоты и интенсивности звукового поля, физических свойств моющей жидкости, величины внешнего статического давления. Ультразвуковая очистка, как правило, производится в химически активных сре дах, а химическая активность среды, в свою очередь, зависит от физических свойств жидкости, особенно от ее температуры.  [c.171]

Поскольку при испарении в звуковом поле физические свойства парогазовой смеси для одной и той же жидкости остаются такими же, как в отсутствие звука, то ускорение массообмена связано лишь с изменением гидродинамических условий на поверхности пластины, выражающемся в возникновении акустических потоков. Ввиду того, что опыты ставились на идентичных пластинках и параметры поля оставались неизменными, полученные результаты по изменению коэффициента массообмена при воздействии звука были обработаны в виде  [c.601]

Условием подобия температурных и скоростных полей теплоносителя является равенство чисел Pr=v/a двух потоков, причем число Рг зависит только от физических свойств теплоносителя.  [c.47]

Появление адсорбированного слоя в зависимости от свойств жидкости может иметь различную физическую природу молекулярное или электрическое поле твердого материала, электрически заряженный двойной слой. Независимо от причины их образования в поверхностных слоях наблюдается изменение структуры жидкости (упорядочение слоев молекул) и, следовательно, изменение структурно чувствительных физических свойств (в частности, вязкости и теплопроводности). Отсюда следует, что первая из упомянутых ранее причин облитерации есть следствие образования адсорбированных слоев.  [c.25]

Электрическая проводимость электролитов — их главное физическое свойство. Она определяется числом носителей заряда — ионов, зарядом их и скоростью дрейфа в направлении силовых линий электрического поля  [c.289]

Характерной особенностью методов начальной стадии является учет существенного влияния на расчетные формулы и на результаты экспериментов начальных условий (критерий Фурье Ро = =aт/б <0,5). Обычно в эксперименте начальные условия требуют постоянства и равенства температур по всей массе образца. В чисто нестационарных методах температурные поля имеют сложную. зависимость от физических свойств тела, геометрических размеров, граничных и начальных условий.  [c.126]

Рассмотрим движение системы материальных точек, находящихся под действием восстанавливающих сил, образующих потенциальное силовое поле, и некоторых возмущающих сил, являющихся явными функциями времени. Конечно, система может находиться под действием сил с более общими физическими свойствами — сил, являющихся функциями времени, обобщенных координат, обобщенных скоростей и в некоторых случаях — обобщенных ускорений 2). Но при изучении малых колебаний действие таких сил может проявиться в том, что линейные дифференциальные уравнения будут иметь переменные коэффициенты ), Здесь не изучаются эти более сложные случаи движения системы. Квазигармонические движения точки рассматриваются в конце этой главы.  [c.263]

В соответствии с третьей теоремой для того чтобы подобие двух явлений имело место, необходимо обеспечить геометрическое подобие систем (геометрические условия однозначности), подобие полей величин, определяющих явление иа границах системы (граничные условия однозначности), и подобие параметров, характеризующих физические свойства теплоносителя (физические условия однозначности). Для нестационарных процессов дополнительно необходимо иметь подобие явлений в начальный момент времени и подобное изменение граничных условий во времени (временные условия однозначности).  [c.269]


Числа подобия, подсчитанные по определяющей температуре, не могут учитывать влияния полей физических параметров на процесс, поэтому составленные из них уравнения подобия правильно описывают явление теплоотдачи только при небольших температурных напорах. То же можно сказать о теоретических формулах для коэффициентов теплоотдачи, полученных в предположении о независимости теплофизических свойств от температуры.  [c.314]

Индивидуальные особенности явления обусловлены геометрическими характеристиками системы, физическими свойствами участвующих в процессе тел, особенностями протекания явления на границах системы и начальным состоянием системы, если это состояние изменяется во времени. При рассмотрении явлений, протекающих в полях массовых сил, необходимы количественные характеристики этих полей. Таким образом, следует различать геометрические, физические, граничные, временные и динамические условия однозначности. Геометрические условия отражают форму и размеры участвующих в процессе тел или их поверхностей. Физические условия характеризуют физические свойства этих тел. Граничные условия определяют особенности протекания явлений на границах изучаемой системы. Временные условия определяют обычно начальное состояние системы и изменение граничных условий во времени. Динамические условия характеризуют ускорение, определяющее массовую силу, или связь этого ускорения с характеристиками движения всей системы или жидкости в ней.  [c.9]

При исследовании неизотермических систем физические свойства жидкости изменяются в соответствии с изменением температуры, которая описывается дифференциальным уравнением энергии. Анализ безразмерной формы этого уравнения позволяет заключить, что поле безразмерной температуры зависит от безразмерных скоростей и критерия Пекле Ре = Шо/о/а [а = Я/(ср)—коэффициент температуропроводности Я, — коэффициент теплопроводности с — удельная теплоемкость жидкости]. Вместо критерия Ре обычно используется критерий Прандтля, не содержащий скорости и размера  [c.16]

Физические свойства, входящие в число Прандтля, в неизотермической системе определяются по характерной граничной температуре (например, по температуре на входе в канал) или по средней температуре жидкости в системе. Поэтому одинаковость критерия Рг в образце и модели не затрагивает вопроса о характере изменения физических свойств в системе. Для строгого соблюдения подобия процессов в образце и модели должны быть подобными поля всех физических параметров, влияющих на процесс. Это требование автоматически выполняется при использовании в образце и модели одинаковой жидкости и при одинаковых температурных полях /=/ х, у, г, т). В других условиях это требование реализовать практически невозможно.  [c.25]

Вообще говоря, потенциал взаимодействия ядер с электронами — это потенциал кулоновского типа, и поэтому он достаточно велик (по модулю) вблизи ядер. При этом химическая связь и многие физические свойства определяются внешними электронами, поскольку внутренние электроны атома спариваются, с трудом возбуждаются и не вносят ощутимого непосредственного вклада ни в энергию связи, ни в другие характеристики кристалла. Однако было бы ошибкой пренебречь ими полностью. Их особая роль состоит в том, что они экранируют внешние электроны от поля ядра, как бы уменьшая его, притом весьма существенно. Это позволяет во многих случаях считать, что на внешние электроны действует потенциал , заметно меньший потенциала ядра и являющийся достаточно слабым. С таким потенциалом оперировать оказывается несравненно проще, поскольку он допускает использование теории возмущений во втором и третьем порядках. Суще-  [c.55]

Появление дефекта упаковки приводит к нарушению периодичности поля кристаллической решетки, и поэтому дефекты упаковки вызывают дополнительное рассеяние электронов и фононов. Результатом этих процессов является изменение физических свойств кристаллов, связанных с переносом электронов или фононов.  [c.236]

Поле температур определяется уравнением энергии (1.5е), которое для условий сферически симметричной задачи при допущении о постоянстве физических свойств жидкости и отсутствии вязкой диссипации принимает вид  [c.251]

Таким образом, развитие квантовой теории поля привело к возникновению представлений о вакууме как о наделенной физическими свойствами среде. Это не есть эфир с механическими свойствами, который играл такую большую роль в механической картине мира XIX в. Но это есть объективная физическая реальность с объективными физическими свойствами, которые проявляются в экспериментах.  [c.402]

Тепловое число Прандтля представляет собой отношение кинематической вязкости (перенос импульса) и коэффициента температуропроводности (перенос тепла). Следовательно, тепловое число Прандтля, содержащее явно лишь величины, определяющие физические свойства среды, характеризует соотношение поля скоростей и поля температур. Следовательно, только при числе Рг = 1 такие поля будут подобными.  [c.241]

Уравнения Максвелла или эквивалентные им уравнения справедливы только в таких точках пространства, в окрестности которых физические свойства среды изменяются непрерывно. На границах поля течения физические свойства могут претерпевать разрывы. Например, на твердой границе электромагнитные свойства жидкости будут скачком переходить в электромагнитные свойства твердого тела. При переходе через такую поверхность разрыва электромагнитных свойств должны выполняться следующие условия.  [c.394]


Течение в трубе на таком удалении от входа, что поле скорости практически не зависит от характера распределения скорости на входе, называется стабилизованным. В случае постоянных физических свойств жидкости при стабилизованном течении распределение скорости по сечению не изменяется по длине трубы. Гидродинамическое сопротивление. Введем понятие коэ( и-циента сопротивления. При движении жидкости по трубе в результате диссипации энергии происходит уменьшение давления. Выделим участок трубы радиусом г, длиной I в области стабилизованного течения (рис. 25.2).  [c.294]

Исследовать влияние коэффициента температуропроводности на уровень и распределение температур в носовом профиле стреловидного крыла сверхзвукового летательного аппарата кратковременного действия, имеющего форму затупленного клина (рис. 17.2). Аэродинамический нагрев тел, обтекаемых потоком воздуха, обусловлен эффектами диссипации энергии, повышением температуры в зонах динамического сжатия потока и высокой интенсивностью теплоотдачи, характер- р с 172 ной для носовых частей затупленных тел. Информация о тепловом режиме элементов конструкции необходима для прочностных расчетов. Температурное поле в носовом профиле помимо условий обтекания, формы и геометрических размеров тела в условиях неустановившегося полета зависит также от физических свойств материала, из которого изготовлен профиль. В частности, неравномерность распределения температур и, следовательно, величины термических деформаций зависят от коэффициента температуропроводности материала а = = Х/(ср).  [c.263]

Критерии подобия, составленные из величин, выражающих масштабы геометрических размеров и действующих полей (температуры, скорости, сил, концентрации и т. п.) и физических свойств вещества, называются определяющими критериями. Величины или параметры, из которых составлены определяющие критерии, называются характеристическими (а также параметрами однозначности), так как они характеризуют условия, в которых протекает рассматриваемое явление, и входят в граничные условия дифференциальных уравнений, описывающих явление. Остальные безразмерные комплексы, которые можно составить из параметров, характеризующих явление, могут быть выражены через определяющие критерии и должны рассматриваться как их функции.  [c.393]

Методика проведения эксперимента и опытная установка. В общем случае поле температур охлаждаемого или нагреваемого тела определяется начальным тепловым состоянием тела, его физическими свойствами, геометрической формой и размерами, а также условиями теплообмена с окружающей средой.  [c.140]

Уравнения, определяющие оба поля, в безразмерном виде будут, очевидно, совершенно тождественны. Безразмерные граничные условия будут тождественны только в том случае, если ими непосредственно определяется поле искомой величины на границах системы, т. е. в случае, если тепловая задача поставлена в граничных условиях первого или второго родов. Электрическая аналогия является очень эффективным средством экспериментального исследования. Замещение исследуемого процесса его электрической аналогией, как правило, создает существенные преимущества. Электрическая модель с заданными геометрическими и физическими свойствами, а также режимные условия, обычно легко реализуются. Все необходимые измерения осуществляются сравнительно просто и с очень высокой степенью точности. Особенно важное значение электрическое моделирование приобретает при исследовании сложных нестационарных процессов.  [c.138]

В пределах каждого интервала распределение источников тепла и физические свойства металла считаются постоянными. По окончании расчета в логическом блоке программы анализируется полученное температурное поле. Если конечные перепады температуры по радиусу или длине загрузки превышают заданные, изменяются число витков индуктора и его длина, после чего расчет повторяется, пока заданные перепады не будут достигнуты.  [c.133]

Рг 7 л критерий Прандтля Мера подобия температурных и скоростных полей в потоке среды характеризует соотношение между полями физических свойств среды с—-удельная теплоемкость, ч—коэффициент кинематической вязкости, р—плотность, X, —коэффициент теп лопроводности  [c.813]

Приведенная выше система соотношений отражает общие закономерности распространения малых возмущений в идеальной сжи-л а мой жидкости независимо от того, как возникли эти Еозм) щения, какие препятствия встречает звук при распространении и какую область пространства занимает среда. В связи с этим указанные соотношения являются лишь математической моделью акустической среды, а не математической моделью некоторой конкретной акустической ситуации. Конкретизация ситуации достигается обычно путем априорного задания формы границы области существования звукового поля, физических свойств границы и характера ее движения, оаспределения источников звука в объеме и начального состояния среды [136, 141, 155].  [c.6]

Преломленне волн. Для наблюдения процесса распространения волн через границу раздела двух сред с различными физическими свойствами поставим следующий опыт. На дно волновой ванны поло им стеклянную пластинку таким образом, чтобы один ее край был 1засположен под углом около 45 к направлению распространения плоских поверхностных волн на воде. Наблюдения показывают, что расстояние / , проходимое Болной над стеклянной пластинкой, меньше расстояния h, которое проходит за то же время волна в Toii части ианны, где нет пластины (рис. 224). Следовательно, скорость распространения поверхностных волн зависит от глубины (толщины слоя воды), с уменьшением глубины скорость распространения волны уменьшается.  [c.226]

Анализ внешнего магнитного поля рассеяния ЭМУ еще более затруднен из-за сложности его характера, трехмерной топологии, необходимости рассмотрения всей еовокупности разнородных по физическим свойствам и конфигурации сред, соответствующих компонентам самого ЭМУ и окружающим его элементам, необходимости учета в общем случае нелинейности и гистерезиса характеристик отдельных из них.  [c.119]

Термометры. При создании термометра можно исходить из любого физического свойства, меняющегося с температурой в нужном интервале, однако для исиользования такого термометра в калориметрии необходимо, чтобы это свойство удовлетворяло некоторым дополнительным условиям. Так, это зависящее от температуры свойство Т) должно измеряться с достаточной точностью, обладать хорошей воспроизводимостью (по крайней мере за время измерений) и иметь значительный температурный коэффициент (ih) d /dT). Теплоемкость термометра должна быть малой по сравнению с Собр. он должен легко приводиться в тепловой контакт с образцом, а также не вызывать значительных нежелательных потоков тепла между калориметром и окружающей средой. При самом измерении не должно происходить выделения большого количества тепла. Желательно также, хотя это и не всегда существенно, чтобы показания такого термометра не зависели от магнитного поля и чтобы они хорошо воспроизводились после отогрева и повторного охлаждения.  [c.329]


Пусть кристалл имеет вид параллелепипеда со сторонами Ьь Ьг, Ьз и объемом Р = П1Ь2Ьз. Предположим, что все пространство заполнено подобными кристаллами. В таком случае трансляционное 1свой ст1во поля кристалла сохраняется. Так как все точки, отличающиеся на целое число Ть Тг, Тз,. эквивалентны, то граничные условия (в обычном смысле) заменяются условием эквивалентности физических свойств кристалла в точках х, х-(-Т и аналогичных точках. Поэтому циклические граничные условия вводятся в виде  [c.75]

Физические свойства теплоносителей зависят от температуры и потому изменяются в соответствии с температурным полем. Характер изменения физических свойств теплоносителя по нормали к поверхности зависит от направления теплового потока. При теплоотдаче от стенки в газ газовые частицы, непосредственно прилегаюш,ие к стенке, имеют наибольшую для рассматриваемой системы температуру и, следовательно, наибольшую величину коэффициента теплопроводности, вязкости, теплоемкости и наименьшую величину плотности. При изменении направления теплового потока изменяется и поле физических величин.  [c.308]

Внутри остова происходит почти полная компенсация влияния ядра и электронов остова в связи с особенностями процедуры ортогонализации [15, 16], и в псевдопотенциале Ашкрофта предполагается, что эта компенсация является полной, и на электроны поле как бы не действует. Параметр находится из условия совпадения величины какого-либо надежно определенного физического свойства с результатами расчета с помощью псевдопотенциала пустого остова. Затем, используя найденное (подогнанное, как говорят в литературе о псевдопотенциалах) значение Гс, рассчитывают другие характеристики материала. В качестве опорных свойств выбирают оптические константы, электросопротивление жидких металлов и т. п.  [c.70]

Критерий Прандтля, содержащий только теплофизические параметры жидкости, характеризует влияние физических свойств среды на конвективный теплообмен и являетея мерой подобия полей температур и скоростей. Кинематическая вязкость v существенно влияет на характер поля скоростей, а температуропроводность а — на процесс теплообмена.  [c.84]

Тензор напряжений в двухфазной упругопластическоп среде. Как указывалось, средняя деформация и среднее напряжение элемента первой фазы прп заданном воздействии определяются не только смещением внешних границ этого элемента, описываемого полем скоростей v(x, t), но и омещешюм межфазных границ внутри этого элемента. Но смещение межфазных границ зависит как от свойств, так и от структуры обеих фаз в смеси. Поэтому в теории движения гетерогенной среды должны учитываться условия совместного поведения или деформирования фаз, которые, кроме физических свойств фаз в общем случае должны учитывать структуру фаз (форму включений, их размер, взаимное расположение). Эффекты прочности твердых фаз могут существенно усложнять указанные условия, которые должны учитывать и различие упругопластических свойств фаз.  [c.146]

Будем считать физические свойства среды р, Ср и X постоянными параметрами, определяемыми видом вещества среды. В действительности они зависят от температуры и давления, а поскольку здесь идет речь о полях температуры t x, у, г, т) и давления р[х, у, г, т), то физические параметры в общем случае являются функциями координат и времени. Зависимостью от давления можно пренебречь по двум причинам во-первых, физические параметры слабо зависят от давления (за исключением плотности газовой среды) и, во-вторых, исходные допущения, при которых получены уравнение (12.4) и являющееся его следствием уравнение (12.7), в совокупности своей эквивалентны предположению об изобарности процесса теплообмена. Учет переменности плотности газовой среды зависит от изменения давления при движении газа с большой скоростью градиент давления в потоке может быть весьма значительным и в этом случае используется уравнение энергии в форме (12.6) с учетом переменности плотности. Таким образом, физические параметры среды зависят в основном от температуры, которую приходится учитывать.  [c.269]

Система дифференциальных уравнений (14.3) — (14.6) совместно с условиями однозначности (14.7) — (14.9) представляет собой формулировку краевой задачи конвективного теплообмена. Следует отметить, что вследствие больщих математических трудностей общее решение системы дифференциальных уравнений конвективного теплообмена получить не удается. Поэтому с целью поиска возможных путей решения поставленной задачи проанализируем структуру предполагаемой функциональной зависимости для температурного поля. На основе постановки краевой задачи можно утверждать, что поле скорости и поле давления есть результат решения уравнений гидродинамики — уравнений (14.4) — (14.6), ибо рассматривается несжимаемая жидкость, физические свойства которой не зависят от температуры. Например, значение вектора скорости в какой-либо точке рассматриваемой области определяется координатами этой точки, коэффициентами дифференциальных уравнений и параметрами, входящими в граничные условия  [c.319]


Смотреть страницы где упоминается термин Поля физических свойств : [c.15]    [c.202]    [c.22]    [c.234]    [c.265]   
Теплообмен при конденсации (1977) -- [ c.26 ]



ПОИСК



Влияние переменности физических свойств на температурное поле внутри теплозащитного покрытия

Свойства Физические свойства

Свойства физические

Уровни энергии бесспиновой частицы в кулоновском поле. Тонкая структура уровней энергии атома водорода. Состояния с отрицательной энергией Физические свойства вакуума

Физические ПТЭ - Физические свойства

Физические и статистические свойства оптических полей



© 2025 Mash-xxl.info Реклама на сайте