Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Другие временные методы

ДРУГИЕ ВРЕМЕННЫЕ МЕТОДЫ  [c.289]

Мгновенное угловое ускорение может быть найдено и другим способом, методом проекций. Согласно формулам (13 ) и (14 ) проекции углового ускорения соответственно на неподвижные и подвижные оси координат определяются как производные по времени от соответствующих проекций мгновенной угловой скорости. Таким образом, находим проекции углового ускорения на неподвижные оси координат  [c.475]


Рассмотрим теперь другой вариант метода медленно меняющихся амплитуд с переходом от исходных координат х и i к новым переменным — амплитуде А и фазе 6, которые такл<е являются медленными переменными в масштабе времени т.  [c.74]

Существует два метода изучения движения частиц. Один из них, называемый методом Лагранжа, изучает движение в пространстве каждой индивидуальной частицы, другой, называемый методом Эйлера, изучает движение, происходящее в каждой точке пространства в любой момент времени, а поведением отдельных частиц не интересуется.  [c.36]

Среднее индикаторное давление принято относить к полному рабочему объему цилиндров Vh как в четырехтактных, так и в двухтактных двигателях. При графическом определении среднего индикаторного давления, как это сделано в работе ТД-7, трудно обеспечить необходимую точность и, кроме того, для расчета требуется много времени, в связи с чем целесообразно применить другой, графоаналитический метод, основанный на приближенном вычислении интеграла Ьщ = j)pdV. Этот метод определения Pi позволяет использовать ЭВМ при обработке индикаторной диаграммы. При наличии соответствующей аппаратуры сигнал, получаемый от электрического датчика давления, вводится непосредственно в ЭВМ.  [c.120]

К настоящему времени более других разработан метод магнитогидродинамического превращения тепла в электрическую энергию, который может быть использован в крупной стационарной энергетике.  [c.468]

Разработанные к настоящему времени методы расчета интенсивности коррозии металла, его предельной температуры, долговечности работы и других количественных показателей основываются на обобщенных математических формулах, аналитически описывающих с количественной стороны высокотемпературную коррозию. Такие формулы являются также основой графических методов определения количественных показателей коррозии.  [c.89]

Выявление структуры аустенита суш ествуюш ими методами цветного вакуумного травления [271] происходит в течение длительного времени (2—30 мин). Поэтому ни эти, ни другие известные методы тепловой микроскопии [272—274] не годятся для изучения структурных изменений в стали при объемном упрочнении деформированием со скоростями, близкими к условиям горячей обработки давлением (прокатка, штамповка, ковка и т. д.).  [c.181]

Временной теневой метод основан на измерении времени пробега импульса через объект. Путь ультразвукового луча SDR, огибающего дефект (рис. 2.13), больше прямого пути SOR. По запаздыванию прихода сквозного сигнала на приемник с помощью низкочастотных волн удается определить наличие крупных дефектов в материалах с большим рассеянием ультразвука, например аустенитной стали с крупнозернистой структурой, чугуне и ряде неметаллов. Контроль подобных материалов другими акустическими методами оказывается вообще невозможным.  [c.119]


Для того чтобы решить эту задачу, надо воспользоваться новой математикой, в первую очередь аналитической геометрией Декарта. Первым применил этот метод к геометрической оптике Малюс. Однако метод Гамильтона имеет более общий характер. Вводя одну функцию, которая полностью характеризует оптическую систему, Гамильтон указывает Функция, которую я. .. полагаю в основу своего метода дедукции в математической оптике, представлялась прежним авторам в другой связи выражением результата весьма высокой и обширной индукции она называется законом наименьшего действия, а иногда принципом наименьшего времени и заключает в себе все, что было до сих пор открыто относительно правил, определяющих форму и положение линий, по которым распространяется свет, и изменений направления этих линий, вызываемых отражением или преломлением, обычным или необычным. Некоторое количество, являющееся в одной теории действием, а в другой — временем, затрачиваемое при переходе от любой одной точки к любой другой, оказывается меньшим, если свет идет своим фактическим путем, а не каким-нибудь иным, или же, по крайней мере, имеет то, что на языке специалистов называется вариацией, равной нулю ).  [c.810]

К настоящему времени метод холодной штамповки занял совершенно исключительное место в технике машиностроения и не только конкурирует с другими методами и способами — литьем, горячей (объемной) штамповкой, но в ряде случаев вытесняет их, особенно при крупных масштабах производства, что подтверждается, в частности, развитием автомобиле- и самолетостроения.  [c.411]

В режимах с коротким временем нагружения (Г= 1.2-1.810-%) соотношение d/X 0.25. В этой области воздействия волн соотношение между динамическим и статическим коэффициентами напряжений находится в ряду 1 < ДКН < СКН. При другом времени соотношение d/Л 0.25 а соответствующий уровень ДКН превышает СКН на 12-14% (рис.4.28), т.е. ДКН СКН. Поэтому для времени воздействия более Ю-% можно воспользоваться методами расчета напряженного состояния для статического нагружения композита /96/  [c.142]

Оптимальные режимы, резания определяют только в результате исследования режущих свойств инструментальных материалов. Существовавшие до последнего времени методы определения режимов резания требуют, как правило, длительного времени и большого расхода металла. Вследствие этого во многих случаях существующие методы исследования не используются, и режимы резания устанавливаются приближенно, без учета зависимости износа инструмента от времени работ, от скорости резания и других факторов (подача, объем снятой стружки и т. п.).  [c.91]

Метод радиоактивных индикаторов превосходит по своим возможностям все другие существующие методы изучения износа инструмента, деталей мащин и механизмов. Метод позволяет изучать -износ одновременно нескольких деталей без остановки и разборки машины или механизма, проводить контроль износа в любой промежуток времени, получать количественную зависимость износа деталей от большого числа параметров.  [c.159]

Определение механическими методами таких постоянных и функциональных параметров исследуемого конструкционного материала, которые полностью характеризуют его длительное сопротивление и входят в соответствующее кинетическое уравнение повреждений, представляет собой трудоемкую лабораторную работу, требующую наличия соответствующего оборудования для проведения длительных и кратковременных испытаний. Даже само изготовление нужного количества образцов материала связано подчас со значительными затратами времени и сил. В связи с этим чрезвычайно актуальна разработка неразрушающих физических методов наблюдения за процессами повреждений, протекающими в различных условиях термомеханического нагружения конструкционных материалов. Однако за исключением указанного, другие неразрушающие методы, основанные на применении различных приборов для физических измерений, пока не могут быть рекомендованы для надежного определения необходимых параметров материала, главным образом, по той причине, что получаемые численные значения физических характеристик, изменяющихся в процессе выдержки под напряжением, не обладают достаточным постоянством в момент фактического разрушения исследуемых образцов.  [c.5]


Аналитические методы решения уравнения теплопроводности (8.1) первоначально были развиты в работах Фурье и в дальнейшем нашли широкое применение в самых разнообразных областях математической физики. В этом методе зависимая переменная в уравнении (8.1) выражается в виде произведения двух независимых функций, из которых одна является функцией только координат, а вторая функцией только времени. Метод Фурье применительно к фундаментальным задачам теории теплопроводности был подробно разработан и доведен до инженерного расчета Г. Гребером, X. С. Карслоу, А. Н. Тихоновым и другими исследователями.  [c.101]

Вследствие этого задачи нестационарной теплопроводности с переменными во времени граничными условиями чаще всего в настоящее время решаются методом Либмана на 7 -сетках, когда не только пространство, но и время представляется дискретно. При решении методом Либмана время разбивается на интервалы, в течение которых переменностью а и Тд во времени пренебрегают, считая их постоянными. При переходе от одного момента времени к другому по методу Либмана требуется перезадание граничных и начальных условий, что при большом количестве узловых точек делает решение весьма трудоемким.  [c.137]

На сегодняшний день нет общепринятого метода, позволяющего выбрать заведомо верный силовой параметр, характеризующий различные виды разрушения при повышенных температурах. Чтобы сделать выбор между параметрами К и с, предлагали [15] прежде оценить время релаксации напряжений вблизи вершины стабильной трещины. Если это время коротко, лучше характеризовать условия нагружения параметром с. Напротив, если релаксация требует длительного времени, зона ползучести вокруг вершины трещины мала и стеснена упругим полем, так и корректным параметром становится величина К. Пользуясь датчиками смещения для оценки характера релаксации, можно определить экспериментально, какой из параметров следует применить. Иногда обращаются к другому экспериментальному методу - испытанию  [c.321]

Основными единицами, по предложению К. Гаусса, следует считать такие, размер которых не зависит от размеров единиц других физических величин и может быть выбран произвольным. Практически при выборе основных единиц измерения необходимо соблюдать ряд условий. В частности, единицы, выбираемые за основные, должны отражать наиболее общие формы существования материи (например, масса, пространство, время) они должны допускать техническое воспроизведение своих эталонов о наивысшей для современной науки точностью, одинаковой для любого места и времени метод воспроизведения основных единиц должен быть принят в международной практике, а их размер быть удобным для практического использования уравнения, определяющие производные единицы измерения через основные, не должны содержать числовых коэффициентов, отличающихся от единицы  [c.9]

Экспериментальная методика изучения коррозионного растрескивания включает а) изготовление из сплава U-образных образцов и погружение их в среду при этом быстром и простом методе неизвестны величины напряжений в каждом из образцов ф использование образцов для испытаний на растяжение, заключенных в сосуды с донными жидкостными уплотнениями в) оценку времени до разрушения, которую можно автоматизировать. Этот метод легко приспособить для дополнительных электрохимических исследований. Применяются также другие обычные методы исследований металлов, например металлография с помощью оптического и электронного микроскопов.  [c.174]

Уравнение (3.3.8) можно разделить на два уравнения, одно из которых определяет координатную зависимость Т(г, ), а другое — временную. Метод разделения переменных уже применялся в 4 гл. 2 при решении волнового уравнения. Как и в задаче о волноводном распространении излучения, применение граничных условий приводит к уравнениям на собственные значения. Собственные решения уравнения (3.3.8) получаются в виде произведения собственной функции, зависящей от простраиственных переменных, на гармоническую функцию от времени  [c.147]

Периодическое определение изменения массы образца металла, подвешенного на платиновой или нихромовой проволоке к чашке аналитических весов и находящегося в атмосфере электрической печи, нагретой до заданной температуры, позволяет проследить кинетику газовой коррозии металла на одном образце и установить закон роста пленки во времени (метод не пригоден при образовании на металле легко осыпающейся или возгоняющейся пленки продуктов коррозии). На рис. 320 приведена схема установки для исследования кинетики газовой коррозии металлов в воздухе и продуктах сгорания газа, которая может быть использована и при подаче в нее других газов. На установке ИФХ АН СССР (рис. 321) возможно одновременное испытание шести образцов. Поворачивая крышку печи, можно захватить крючком любой образец для взвешивания. Чтобы можно было загружать образцы, в крышке сделаны щелевидные отверстия. Более чувствительными являются вакуумные микровесы различных конструкций (Мак-Бэна, Гульбрансена и др.).  [c.437]

Методы конечных элементов и конечных разностей имеют ряд существенных отличий. Прежде всего методы различны в том, что в МКР аппроксимируются производные искомых функций, а в МКЭ — само решение, т. е. зависимость искомых функций от пространственных координат и времени. Методы сильно отличаются и в способе построения сеток. В МКР строятся, как правило, регулярные сетки, особенности геометрии области учитываются только в околограничных узлах. В связи с этим МКР чаще применяется для анализа задач с прямолинейными границами областей определения функций. К числу традиционных задач, решаемых на основе МКР, относятся исследования течений жидкостей и газов в трубах, каналах с учетом теплообменных процессов и ряд других. В МКЭ разбиение на элементы производится с учетом геометрических особенностей области, процесс разбиения начинается от границы с целью наилучшей аппроксимации ее геометрии. Затем разбивают на элементы внутренние области, причем алгоритм разбие-  [c.49]


Рассмотрим принципы работы голографического интерферометра фазовых объектов на примере метода голографической интерферометрии двух экспозиций, хотя в. зтом приборе можно применять и другие известные методы (например, метод реального времени). Основы метода двух экспозиций и возможности его практического применения были рассмотрены в гл. 1. Голографическая интерферометрия фазовых объектов отличается следующими особенностями. Во время первой. зкспозиции фотопластинка в голографическом интерферометре освещается опорной и объектной волнами при отсутствии в рабочей  [c.106]

Метод определения содержания железа в жидкостях наиболее прост, нетрудоемок и достаточно оперативен. Он может быть использован для первоначальной относительной оценки скорости коррозии по технологической линии и при последующей эксплуатации оборудования для сравнения скоростей протекания коррозионного процесса в каждой точке линии с течением времени и своевременного выявления возможного ускорения его. Об ускорении коррозионного процесса судят по увеличению количества железа. Для анализа железа в углеводородном конденсате, воде и других жидкостях может быть рекомендован химический или любой другой приемлемый метод.  [c.92]

Амплитудно-временной метод распознавания с использованием коэффициента К - Согласно теории прочности дефекты в сварных конструкциях, как правило, моделируемые эллиптическими цилиндрами, характеризуются отношением радиуса г закругления в вершинах дефекта к его высоте h (наибольнзей протяженности дефекта вдоль нормали к поверхности сварного шва) либо коэффициентом формы Q = = 0,5Ь// Ь, I — м алая и большая полуоси эллипса). Задача состоит в том, чтобы, измерив параметры дифрагированных сигналов, можно было бы дать количественные характеристики дефектов, приведенных к эллиптическим цилиндрам или эллипсоидам вращения, и по ним определить степень ог асности дефектов, запас прочности, продолжительность работы и другие X а р а ктер ксти к к ко нстр у к ци и.  [c.272]

При Л о = kfilas > 10 это условие обычно не является лимитирующим, однако, если на некоторых отрезках времени оно все же нарушается, то эти отрезки должны быть выделены в виде отдельных участков, при рассмотрении которых можно воспользоваться другой модификацией метода условного осциллятора (см. п. 17 и гл. 7)  [c.167]

Такое уравновешивание занимает много времени, так как уравновешивая ротор в одной плоскости, мы создаем дополнительную неуравновешенность в другой. Эгот метод может привести к цели только тогда, когда процесс уравновешивания является сходящимся, т. е.  [c.62]

В реальных 1процессах изменение 1ПОтенциалов окружающей среды приводит к изменению коэффициентов теплообмена (од) и массообме-на (от). Представляет поэтому интерес рассмотреть метод расчета нестационарных ироцессов переноса при одновременном изменении во времени обеих из названных факторов. В качестве примера определим нестационарное поле потенциалов неограниченной пластины, при этом явление основного переноса будем считать не связанным с явлениями переноса других потенциалов. Метод решения этой задачи был дан К. А. Киселевым и А. И. Лазаревым [Л. 13].  [c.333]

Предлагаемая вниманию читателей книга освещает различные методы решения задач механики деформируемого твердого тела. Для иллюстрации возможностей методов выбраны задачи статики, динамики и устойчивости стержневых и пластинчатых систем, т.е. задачи сопротивления материалов, строительной механики и теории упругости, имеющих важное практическое и методологическое значения. Каждая задача механики деформируемого твердого тела содержит в себе три стороны 1. Статическая - рассматривает равновесие тела или конструкпди 2. Геометрическая - рассматривает связь между перемещениями и деформациями точек тела 3. Физическая -описывает связь между деформациями и напряжениями. Объединение этих сторон позволяет составить дифференциальное уравнение задачи. Далее нужно применить методы математики, которые разделяются на аналитические и численные. Большим преимуществом аналитических методов является то, что мы имеем точный и достоверный результат решения задачи. Применение численных методов приводит к получению просто результата и нужно еще доказывать его достоверность и оценивать величину погрепшости. К сожалению, до настоящего времени получено весьма мало точных аналитических решений задач механики деформируемого твердого тела и других наук. Поэтому приходится применять численные методы. Наличие весьма мощной компьютерной техники и развитого программного обеспечения практически обеспечивает решение любой задачи любой науки. В этой связи большую популярность и распространение приобрел универсальный численный метод конечных элементов (МКЭ). Применительно к стержневым системам алгоритм МКЭ в форме метода перемещений представлен во 2, 3 и 4 главах книги. Больпшми возможностями обладает также универсальный численный метод конечных разностей (МКР), который начал развиваться раньше МКЭ. Оба этих метода по праву занимают ведущие места в арсенале исследований. Большой опыт их применения выявил как преимущества, так и очевидные недостатки. Например, МКР обладает недостаточной устойчивостью численных операций, что сказывается на точности результатов при некоторых краевых условиях. МКЭ хуже, чем хотелось бы, решает задачи на определение спектров частот собственных колебаний и критических сил потери устойчивости. Эти и другие недостатки различных методов способствовали созданию и бурному развитию принццпиально нового метода решения дифференциальных уравнений задач механики и других наук. Метод получил название метод граничных элементов (МГЭ). В отличии от МКР, где используется конечно-разностная аппроксимация дифференциальных операторов, в МГЭ основой являются интегральное уравнение задачи и его фундаментальные решения. В отличие от МКЭ, где вся область объекта разбивается на конечные элементы, в МГЭ дискретизации подлежит лишь граница объекта. На границе объекта из системы линейных алгебраических уравнений определяются необходимые параметры, а состояние во  [c.6]

Существуют другие приближенные методы решения задач неустановившейся ползучести [32], однако наиболее общим является метод конечньк элементов (МКЭ) [3, 19], позволяющий численно поэтапно проследить историю изменения во времени напряжений и деформаций во множестве конечных элементов. Преимуществом МКЭ является возможность исследования тел сложной формы с учетом реальных граничных условий на основе уравнения состояния, включающего в себя необходимые структурные параметры.  [c.125]

Методы частотного анализа позволили существенно продвинуть теорию ВУС. На их основе удалось отказаться от эталонных моделей, которыми приходится оперировать, используя временные методы, и перейти к более полным и реалистичным моделям ВУС. Таким образом, удалось, в частности, разработать теорию авторе-зонансных машин виброударного действия [33]. Однако, хотя для ряда принципиальных задач (например, настройка ВУС на резонансный режим) знание основного тона достаточно, тем не менее частотные методы не дают полной информации о значениях динамических нагрузок в ударных парах, о структуре сложных типов виброударных процессов и ряда других динамических эффектов, получить которые можно только, оперируя полными наборами гармонических составляющих широкополосных процессов.  [c.385]


Еще с начала XX в. проводится систематическая работа по унификации и стандартизации методик количественного анализа черных металлов. Она показала недостаточность традиционного комплекса исследований методики, проводимых только в рамках организации-разработчика, для обеспечения требуемой точности результатов измерений и необходимость использования в этих целях впервые созданных в черной металлургии стандартных образцов (СО), аттестованнь1е характеристики которых выступают в качестве действительных значений массового содержания определяемого компонента. Одновременно специалистами в области аналитического контроля черных металлов, а в дальнейшем и в других промышленных отраслях, были разработаны специфические, во многом отличающиеся от привычных для метрологии того времени, методы контроля качества результатов количественного анализа, в том числе такие эффективные приемы повышения его достоверности, как межлабораторные испытания методик.  [c.13]

В разработанных к настоящему времени методах комбинированного анализа рассматриваются лишь термодинамические, газодинамические и теплообменные вопросы нестационарного течения рабочего тела при его движении в системе двигателя. Вопросы, связанные с динамикой машины и сопротивлением материалов, не включаются в рассмотрение, и это может иметь в дальнейшем нежелательные последствия. Например, методы комбинированного или раздельного анализа, использованные при проектировании или оптимизации двигателя, могут дать результаты, не совместимые с требованиями, которые следуют из рассмотрения динамики машин или сопротивления материалов. Следовательно, методы комбинированного анализа (или анализа 3-го порядка) должны применяться только на последней стадии предварительной проработки или проектирования, как показано на рис. 3.1, когда все основные требования выполнены. В открытой литературе опубликовано несколько методов комбинированного анализа, которые имеют практически одинаковый аналитический подход и различаются лишь методами решения получаюигейся системы уравнений. В опубликованных работах, на наш взгляд, уделяется чрезмерное внимание выводу основных уравнений, и, хотя само по себе это и полезно, в зависимости от типа публикации зачастую может создаваться впечатление, что эти уравнения получены впервые и применимы исключительно для двигателя Стирлинга. И то и другое почти полностью неверно. Рабочий процесс в двигателе Стирлинга представляет собой нестационарное течение рабочего тела в каналах переменного сечения ири наличии трения и теплообмена. Подобные течения были подробно рассмотрены, например, в  [c.335]

Последнее замечание следует сделать относительно выбора координат. В предложенных к настоящему времени методах комбинированного анализа используется система координат Эйлера x,t), поскольку она применяется при рассмотрении контрольного объема. Можно применять и другие системы координат, а именно лагранжевы и псевдолагранжевы. Если сравнивать с этими двумя системами, то использование эй.теровых координат приводит к более громоздким расчетам при анализе одномерного нестационарного течения [66]. Как будет показано ниже, метод характеристик и метод узлов на самом деле связывают подходы Эйлера и Лагранжа, и связывающее соотношение можно найти, исходя из понятия поля параметров. Однако в данный момент мы определим различные координаты для одномерной системы. В рамках подхода Эйлера рассматривается постоянный объем в пространстве, и параметры рабочего тела, мгновенно занимающего этот объем, определяются таким образом, что нет необходимости следить за отдельными частицами газа. При использовании подхода Лагранжа рассматриваются отдельные частицы и прослеживаются их траектории в поле течения. В одномерной системе рассматривается слой газа (а не отдельные частицы) и переменная л заменяется другим параметром (скажем, а для данного слоя газа), который равен величине х при = 0, и, следовательно, значение а будет изменяться от частицы (слоя) к частице (слою). Псевдолагран-жева координата т данного слоя газа обозначает массу газа, содержащегося в объеме между этим слоем и исходным слоем при = о, и поэтому каждый слой имеет свое значение т, ко-  [c.344]

В иностранной литературе последних лет указывается на ряд преимуществ метода обеззараживания воды бактерицидными лучами по сравнению с другими известными реагентными методами [65, 66]. Одновременно отмечается, что препятствием к применению этого эффективного метода обеззараживания воды на крупных водопроводах является малая мощно.сть искусственных источников ультрафиолетового излучения. Поэтому для обеззараживания воды на водопроводах больших населенных мест требуется использование большого количества л.амп и бактерицидных установок. В связи с этим до настоящего времени метод обеззараживания воды бактерицидными лучами за рубежом находит применение в первую очередь на водопроводах малых населенных пунктов, отдельных жилых владений и обьекто1В, а также. при обеззараживании воды на предприятиях по переработке пищевых и молочных продуктов.  [c.32]

Так как в соотношении (6.8) амплитуды и фазы и определяются при помощи довольно сложных выражений, приведенный выше метод, хота он остается всегда пригодным, часто неудобен. Приведем теперь другой изящный метод ([12], см. также 8 гл. IV и 5 гл. XV), где решение выражается в виде тригонометрического ряда по л с коэффициентами, которые яв ляются функциями, времени. Этот метод, в частности, полезен при "рассмотрении ряда простых колебаний температуры поверхности, которые часто возникают на практике (например, прямоугольные и пилообразные колебания), мы рассмотрим случай установиешгй-температуры в пластине О < х < /,  [c.110]

Другой упрощенный метод детерминированного прогноза коррозии, разработанный Л. Я. Цикерманом [103], полностью исключает необходимость получения входной информации. Этот метод обладает даже несколько повыщенной точностью прогнозирования коррозии. Основой этого метода служит функциональная зависимость материальных коррозионных потерь, в частности постоянной времени Т для переходной характеристики коррозия — время , от агрессивных свойств коррозионной среды и времени, т. е. T=f x, т).  [c.181]

При выполнении расчетов на ЭВМ. СМ-4 время счета одного варианта при числе итераций 8—10 составляет 5—6 Мин. Решение аналогичной задачи с применением метода конечных элементов требует значительно большого-времени — 20 30 Шя, что связано с большими размерами системы (IX.42) и необходимостью хранения большей части элементов матрицы жесткости а магнитном диске. Другим недостатком метода конечных элементов являются трудбемкость решения, нестационарных задач теории теплопроводности. Метод конечных разно-  [c.313]


Смотреть страницы где упоминается термин Другие временные методы : [c.242]    [c.134]    [c.102]    [c.373]    [c.35]    [c.8]    [c.65]    [c.38]    [c.360]    [c.307]   
Смотреть главы в:

Ультразвуковой контроль материалов  -> Другие временные методы



ПОИСК



Временные методы

Другие методы

Ось временная



© 2025 Mash-xxl.info Реклама на сайте