Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Упрочнение объемное

К видам ЭЭО относятся электроэрозионное упрочнение, объемное копирование, прошивание, маркирование, вырезание, отрезка, шлифование и др.  [c.305]

Если изделие конструируется по принципу композиционного материала с реализацией комбинированного упрочнения — объемного и поверхностного, то открываются возможности успешного использования всех дислокационных механизмов упрочнения Од(п.я.) и Оз — для объемного упрочнения, Пд(л), Ош Оф, Ор — для поверхностного при нанесении покрытий. Такой новый подход к упрочнению различных металлических изделий (развитие нового принципа комбинированного упрочнения) позволяет по-новому рассматривать и всю проблему покрытий в целом. С этих позиций покрытия рационально применять не только для восстановления изношенных поверхностей деталей машин, но и главным образом при производстве новых деталей машин, инструментов и конструкций.  [c.11]


Испытания плоских образцов, упрочненных объемно, и с покрытиями проводятся на комбинированных экспериментальных установках, позволяющих определять предел выносливости, строить кривые малоцикловой усталости, наблюдать за процессом зарождения трещины в покрытии от заранее созданного концентратора напряжения, определять кинетику распространения трещины в покрытии и в основном металле.  [c.34]

Существуют два основных вида термического упрочнения — объемное и поверхностное.  [c.484]

Для термомеханической обработки валков станов холодной прокатки спроектировано промышленное оборудование, позволяющее производить термомеханическое упрочнение (объемное и поверхностное в зависимости от диаметра и конкретных параметров процесса) валков диаметром 10—100 мм и длиной до 2500 мм. Схема одной из установок представлена на рис. 3.1 [89].  [c.122]

Рис. 302. Упрочнение объемной деформацией Рис. 302. Упрочнение объемной деформацией
Рис. 303. Примеры упрочнения объемной деформацией Рис. 303. Примеры упрочнения объемной деформацией
Упрочнение при образовании игольчатого феррита обусловлено фазовым наклепом у Превращение сопровождается объемными изменениями, а так как оно (в результате переохлаждения) совершается при пониженной температуре, то у- и а-фазы претерпевают наклеп. В итоге превращения блочное строение сплава сильно измельчается при наведении значительных напряжений И рода.  [c.352]

Минимальные значения коэффициента запаса прочности дня зубчатых колес с однородной структурой материала (улучшенных, объемно-закаленных) 1Д для зубчатых колес с поверхностным упрочнением 1 >2.  [c.13]

Из уравнения (2.57) следует, что с увеличением объемной дола пор (со снижением параметра Fn), жесткости напряженного состояния [с увеличением Охх + Оуу)/oi] и снижением значения коэффициента деформационного упрочнения k критическая деформация е/ уменьшается.  [c.114]


Вследствие упругого взаимодействия между дислокациями сопротивление их движению сильно возрастает и для их продвижения внешнее напряжение должно резко возрасти (стадия // упрочнения). Под влиянием все возрастающего наиряжения развивается поперечное скольжение винтовых дислокаций, т. е. скольжение с переходом из одной разрешенной плоскости скольжения в другую. Это приводит к частичной релаксации напряжений, аннигиляции отдельных дислокаций разного знака и группировке дислокаций в объемные ячейки, внутри которых плотность дислокаций меньше, чем в стенках ячеек. Наступает /// стадии деформации, когда происходит так называемый динамический возврат, который приводит к уменьшению деформационного упрочнения.  [c.46]

Это упрочнение обусловлено фазовым наклепом (поскольку превращение сопровождается объемными изменениями, происходя-  [c.162]

Аустенитно-ферритные (стареющие) стали, легированные Ti и А1, в которых при нагреве до 450—550° G образуются высокодисперсные фазы, вызывающие упрочнение, обладают высокой прочностью и теплостойкостью до 500° С. Эти стали по теплопроводности и объемным изменениям являются промежуточными между ферритными и аустенитными сталями  [c.268]

Новый способ упрочнения - гидростатическое прессование (объемная штамповка, экструзия) металла при сверхвысоком давлении. В условиях всестороннего сжатия при таких давлениях резко повышается пластичность даже самые твердые и хрупкие материалы (интерметаллиды, карбиды, бориды, керамика) приходят в состояние текучести и легко заполняют формы. В процессе обжатия происходит повышение прочности и вязкости, которое не теряется и при последующем отжиге металла. Так, например, прочность молибденовых сплавов увеличивается в 2 — 3 раза, вязкость в 15 — 20 раз, пластичность в 10 раз. Гидростатическое прессование используется и как способ упрочнения, и как способ точной обработки наиболее труднодеформируемых материалов.  [c.178]

В проверках прочности под действием редких или единичных больших пиковых перегрузок (при опасности таковых) допускаемые контактные напряжения для улучшенных и объемно-закаленных зубьев [а] = 2,8 От, а для поверхностно упрочненных 44//нкс,-  [c.186]

Все вышеперечисленные методы дают качественную оценку технического состояния оборудования. При их проведении обнаруживаются объемные опасные дефекты, такие как трещины, подрезы, непровары, поры. Однако необходимо отметить, что появление таких дефектов является лишь заключительной стадией процессов, происходящих на микроуровне и сопровождающихся изменением характеристик прочности, пластичности и трещиностойкости. Одним из таких процессов является охрупчивание (деформационное упрочнение) материала, вызывающее повышение временного сопротивления Св, предела текучести Пг и снижение запаса пластичности, ударной вязкости и трещиностойкости. Это, в свою очередь, увеличивает вероятность хрупкого разрушения даже при температурах выше предела хладноломкости.  [c.337]

В диапазоне относительных толщин аСр < ж < ае проявляется эффект контактного упрочнения мягкой прослойки, в последней развивается объемное напряженное состояние из-за сдерживания по контактным поверхностям пластического течения мягкого металла. Однако прочностные  [c.23]

В рамках указанных представлений можно учесть изменение прочностных свойств при изменении состояния среды, считая, например, сдвиговый предел текучести и модуль сдвиговой упругости G функциями давления, температуры и объемного содержания фаз, причем обычно растет (упрочнение) с увеличением давления и падает (разупрочнение) с увеличением температуры. Часто можно принять линейный закон упрочнения по давлению  [c.148]

Чем более затруднена объемная диффузия в упрочненном материале, тем менее вероятна локализация пластической деформации в тех объемах металла, которые при обычных условиях в существенной степени теряют свою способность сопротивляться деформированию из-за наличия менее прочной коагулированной фазы [68].  [c.38]

ТОГО, ожидается, что по аналогии с величиной дисперсного упрочнения 50-эффект должен быть связан с объемным содержанием упрочняющей фазы, а также с условиями механических испытаний.  [c.86]


Формула (3.39) и расчет показывают, несмотря на то что напряжение течения границ ячеек выше, чем всего материала в случае однородного распределения дислокаций, появление таких границ приводит в результате к уменьшению действующего напряжения течения. Например, как это следует из рис. 3.14, если объемная доля границ составит 0,05 и в них собрано 90 % дислокаций, то отношение напряжений течения становится равным 0,5, т. е. константа А в уравнении а Лр / уменьшается в два раза, что свидетельствует об уменьшении эффективности упрочнения при неоднородном распределении дислокаций. С учетом сказанного уравнение (3.23) приобретает вид  [c.125]

Схемы V—F/7 на рис. 2 характеризуют деформацию и разрушение при повышенных температурах и малых напряжениях, когда градиент плотности и скорости дислокаций поверхностных и объемных источников уменьшается и поверхностные источники уже не играют преобладающей роли. При реализации механизма по схемам V—VI как напыленный слой, так и переходный, интерметаллический, способствуют упрочнению композиций, и в этом случае на дислокации действуют поляризационные силы отталкивания. В структуре наблюдается образование мелкодисперсных частиц и плотных сеток дислокаций.  [c.107]

Цели объемного упрочнения самостоятельны, они главным образом направлены на создание таких оптимальных структур сплава, которые обеспечивают благоприятное сочетание прочности, вязкости и хладостойкости.  [c.5]

Способы объемного упрочнения развиваются на базе современной структурной теории прочности металлических сплавов, включающей основные положения физики реального строения сплавов, механики твердого деформируемого тела и термодинамики открытых систем на синергетической основе.  [c.5]

Весьма перспективными направлениями исследований в этой области следует считать изучение микромеханизмов разрушения и трещиностойкости вязких сталей рассмотрение субструктуры, и склонности к хрупкому разрушению сплавов развитие идеи комбинированного упрочнения деталей машин, сочетающего объемное повышение вязкости разрушения с нанесением износостойких покрытий изыскание путей создания оптимальных субструктур сплавов при комбинированном упрочнении, обеспечивающих их повышенную трещиностойкость.  [c.7]

Результаты исследований влияния разных покрытий на механические характеристики конструкционных материалов приведены в работах [И, 20—211. По современным представлениям о разрушении металла предполагается, что покрытие, препятствуя выходу дислокаций на поверхность, может в одних случаях упрочнять основу, а в других — разупрочнять. Эффект влияния покрытий на основной материал будет зависеть от условий, определяющих динамику дислокаций на поверхности раздела [22]. Результат же взаимодействия дислокаций с границей раздела основа — покрытие связан с двумя типами источников дислокаций — объемными и поверхностными. Объяснение роли покрытий в упрочнении сплавов с позиций дислокационных представлений об изменениях в структуре поверхностных слоев в процессе деформации дается и в работах [23, 24].  [c.21]

Зубчатые колеса из стали пониженной прокаливаемости, упрочненные объемно-поверхностной закалкой (при глубинном индукционном нагреве), по статической, динамической и усталостной прочности зубьев превосходят такие же зубчатые колеса из хромомарганцетитановых, хромоникелевых и других сталей, подвергнутые цементации и закалке.  [c.227]

Степень дисперсного упрочнения зависит от размера, формы и модуля сдвига частиц, расстояния между ними и характера связи между частицами и матрицей. Оптимальные свойства обычно получают при содержании частиц в [ ределах 2—15% (объемн.), размере частиц 0,01—0,1 мкм и расстоянии между частицами 0,1—1 мкм. Такие материалы получают в основном методами порошковой металлургии, включающими изготовление тонких порошков или  [c.635]

Для длительно работающих быстроходных передач > NN0 , следовательно, ZN = 1, что и учитьшает первый знак неравенства в формуле (2.1). Второй знак неравенства ограничивает допускаемые напряжения по условию предотвращения пластической деформации или хрупкого разрушения поверхностного слоя 2ятах = 2,6 для материалов с однородной структурой (улучшенных, объемно-закаленных) и Zяmax = 1Ф для поверхностно-упрочненных материалов (закалка ТВЧ, цементация, азотирование).  [c.13]

Следует отметить, что в общем случае многоосного и сложного нагружений концепция обобщенной кривой циклического деформирования не применима [72, 73, 155]. Наиболее распространенным описанием деформирования при циклическом нагружении и объемном напряженном состоянии является схема трансляционного упрочнения, модификация которой использована при формулировке модели кавитационного разрушения в разделе 3.3. В случае одноосного циклического нагружения схема трансляционного упрочнения сводится к допущению, что 5ф(ёР)/ЭёР = = onst. С целью анализа применимости данной схемы параллельно с представленными выше расчетами были проведены вычисления долговечности при =(ф(ДеР) —  [c.185]

Применяют дополнительное упрочнение путем приложения магнитного поля, вьпывающего в силу известного явления магнито-стрикции объемный наклеп материала (термомеханомагнитная (Сработка).  [c.177]

Примеры объемного упрочнения показаны на рис. 275 (обжатые зоны зачернены). Балки (рис. 275, д) упрочняют прокатыванием полок, фасонньщ детали (рис. 275, б) — обжатие.м наиболее напряженных на растяжение элементов отверстия стушщ (рис. 275, в) — прошиванием плоские детали (рис. 275, г) - опрессовкой с торцов детали типа колец (рис. 275, д) — эксцентричным раскатыванием и накатыванием.  [c.400]

Поэтому широко применяют поверхностные упрочнения. Их эффект складывается из упрочнения поверхностного слоя и из создания в нем остаточных сжимающих напряжений, которые вычитаются из опасных растягивающих напряжений от внешней нагрузки. Попсрхностные упрочнения цементацией и зикалкой повышают, по сравнению с объемной закалкой до той же твердости, сопротивление усталости на 30...40 % и более.  [c.33]


При переходе непосредственно от однородного распределения свойств в объемной части кристаллического тела (D =3) наблюдается массовый выход дислокаций и формируется первая подповерхностная зона I с повышекной плотностью данных линейных дефектов (рис. 6.16). В этой зоне осуществляется самоорганизация дислокационных скоплений в замкнутые ячеистые, спиральиыс или другие структуры. Сжимающие напряжения в ней обеспечивают сохранение форл ы и свойств граничащей с ней объемной фазы, которая простирается вглубь объекта. В частности, увеличение плотности дислокаций способствует упрочнению материала, что используется в некоторых технологических методах поверхностной обработки сталей.  [c.300]

Анализ рассмотренных методов механических испытаний металлов с точки зрения их применимости к изучению процесса деформационного упрочнения показал, что наиболее приемлемым является испытание на одноосное растяжение цилиндрических образцов. Действительно, схема линейного одноименного напряженного и деформированного состояния, наиболее точно определяющая достоверные значения истинных напряжения 5 и деформации е сохраняется неизменной до значительной степени деформации. Переход к объемному напряженному состоянию при образовании щейки вносит некоторую условность в определение истинного напряжения, однако имеются методики, позволяющие учитывать гидростатическую компоненту растягивающего напряжения и таким образом избегать значительной погрешности. Определение же истинной деформации е не вызывает затруднений.  [c.36]

Уэстбрук и Вуд предлагают следующую модель явления чумы [7]. При низких температурах, когда скорость диффузии кислорода невелика, реакция ограничивается областями, близ-1ШМИ к внешней поверхности. В некотором промежуточном интервале температур кислород быстро диффундирует в образец по границам зерен, в то время как объемная диффузия все еще ограничена. Кислород, находящийся в областях, близких к границам зерен, охрупчивает материал, и внутренние напряжения, возникающие по той или иной причине, разрушают образец по межзерновым границам. При высоких температурах локальное упрочнение снимается не только вследствие того, что скорости диффузии по границам зерен и объемной диффузии становятся сравнимыми, но и потому, что степень упрочнения сама по себе резко изменяется с температурой.  [c.291]

В целом эффект во.здействия покрытия проявляется по-разному в зависимости от диапазона температур и напряжений. И это прежде всего связано с действием двух типов источников дислокаций — объемных и поверхностных. На рис. 2 схематически представлены возможные варианты механизма упрочнения и разупрочнения материалов плазменными покрытиями.  [c.105]

Нанесение покрытия на упрочненную основу детали или конструкции предполагает значительное увеличение твердости, износостойкости, жаростойкости, антикоррозийности и т. д. Обе проблемы повышения надежности и долговечности, т. е. объемное и поверхностное упрочнение, должны решаться комплексно.  [c.5]

Упрочнение увеличением числа дислокаций до.лжно рассматриваться с учетом двух механизмов (Од(л) и сТд(п я))- Рост плотности дислокаций при их беспорядочном переплетении и образовании леса для объемного упрочнения мало эффективен, так как вместе с активным упрочнением устраняется возможность релаксации пиковых напряжений. В этом случае упрочнение, например наклепом, рационально, как правило, в поверхностном слое, при исходной матрице с высокой пластичностью. Деформационное упрочнение сохранит свое определенное значение, но развитие и совершенствование этого механизма, вероятно, целесообразно в сочетании с последующей перестройкой (полигонизационный нагрев) или сегрегационным закреплением (деформационное старение) созданных дислокаций.  [c.10]


Смотреть страницы где упоминается термин Упрочнение объемное : [c.400]    [c.18]    [c.101]    [c.545]    [c.297]    [c.119]    [c.88]    [c.291]    [c.190]    [c.167]    [c.78]    [c.92]   
Исследование структуры и физико-механических свойств покрытий (1986) -- [ c.5 , c.148 , c.151 , c.166 ]



ПОИСК



Исследование вязкости разрушения при оптимизации объемного упрочнения стали

Модуль объемный упрочнения

Модуль объемный — Формулы упрочнения — Обозначение

Упрочнение

Упрочнение объемным уплотнением

Упрочнение термической объемной обработкой

Упрочнение термической объемной обработкой (Р.С. Фахуртдинов)



© 2025 Mash-xxl.info Реклама на сайте