Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Универсальные решения уравнений движения

УНИВЕРСАЛЬНЫЕ РЕШЕНИЯ УРАВНЕНИЙ ДВИЖЕНИЯ 305  [c.305]

Универсальные решения уравнений движения  [c.305]

Постановкам универсальных решений уравнений движения ( 15—16) уделено значительное место в [11] и [13]. Приведены примеры радиальных колебаний цилиндрической трубки ( 18) и радиально-симметрических колебаний полой сферы ( 19). См. работы  [c.504]

Для полей, генерируемых хаотическими источниками, достаточно знать средние числа заполнения п , чтобы определить оператор плотности д и из него все статистические свойства поля. Однако если источник по природе не хаотический, то мы не можем предложить какой-либо универсальный путь нахождения оператора плотности для поля, которое он генерирует, без анализа некоторых деталей механизма излучения. Единственный надежный способ нахождения оператора плотности заключается, вообще говоря, в построении теоретической модели изучаемой системы и интегрировании соответствующего уравнения Шредингера, или, что эквивалентно, в решении уравнения движения для оператора плотности. Применительно к лазерному осциллятору эти задачи необычайно трудны и пока не решены до конца в рамках квантовой механики. Наибольшая трудность заключена в математической сложности, связанной с нелинейностью устройств. Нелинейность играет важную роль в стабилизации полей, генерируемых лазером. Следовательно, пока в этих вопросах не будет достигнут дальнейший прогресс, мы не сможем дать последовательное квантовомеханическое объяснение ширины частотной полосы флуктуаций излучения лазера.  [c.157]


Сумма кинетической и потенциальной энергии остается при движении постоянной. Эта фундаментальная теорема называется законом сохранения энергии . Мы получили скалярное уравнение, являющееся лишь одним из интегралов уравнений движения. Хотя его одного и недостаточно для полного решения задачи о движении системы (исключая случай одной степени свободы), это тем не менее один из наиболее фундаментальных и универсальных законов природы, который при соответствуюш,их модификациях выполняется не только в механических, но и во всех физических процессах. Постоянная Е называется постоянной энергии .  [c.119]

Экспериментально установлено, что турбулентность характеризуется своеобразной универсальной моделью потока. В течение нескольких последних десятилетий считалось, что существующая в природе действительная турбулентность слишком сложна для непосредственного изучения, и в большинстве работ рассматривалась искусственная схема турбулентности. Сложность, присущая уравнениям движения, не позволяла получать более чем общее описание явления турбулентности, а тем более получить общее решение уравнений турбулентного потока. Фактически первые исследования были так же близки к решению задачи, как и более поздние. Положение усугублялось далее тем, что большинство исследователей считало, что в турбулентном потоке имеет место совершенно хаотическое движение частиц жидкости, а поэтому не существует и не может существовать какой-либо исходной модели потока. Такая точка зрения, т. е. рассмотрение хаотического движения частиц жидкости как явления, аналогичного движению молекул в ламинарном потоке, господствовала на первом этапе развития теории турбулентности. Измерения корреляции показали, что эти частицы имеют определенный размер, однако достоверность этого вывода ограничена возможностью эксперимента. Долгое время не принимался во внимание тот факт, что существует простая и универсальная схема потока, которая и объясняет наблюдаемую корреляцию.  [c.57]

Идея одного из первых приближенных методов решения уравнений пограничного слоя была предложена Т. Карманом и реализована тогда же К. Польгаузеном В методе Кармана — Польгаузена к пограничному слою применяется интегральное соотношение (теорема об изменении количества движения), которое дает возможность построить, задаваясь формой распределения скоростей в поперечных сечениях, однопараметрическое семейство приближенных решений. Однопараметрические приближенные методы получили в последующем широкое развитие как за рубежом (Л. Хоуарт и др.), так и в СССР (Л. Г. Лойцянский, Н. Е. Кочин и др.) . Отметим, что Л. С. Лейбензон и В. В. Голубев показали возможность использования в качестве интегрального соотношения вместо теоремы об изменении количества движения (или в дополнение к ней) ряда других интегральных условий. Позже Лойцянский указал пути построения двух- и многопараметрических приближений, основанные па сведении уравнений пограничного слоя к некоторому универсальному виду, одинаковому для самых разнообразных задач теории пограничного слоя.  [c.297]


Одной из наиболее выигрышных тем, имеющих прикладное значение и дающих возможности для теоретического и практического освоения методов совместного применения аналитических и численных способов решения дифференциальных уравнений движения, является динамика систем с одной степенью свободы. Теоретическое изучение этой темы с решением несложных задач на практических занятиях возможно в курсах теоретической механики объемом от 50 до 102 лекционных часов, читаемых студентам большинства специальностей технических вузов выдачу соответствующего расчетно-графического задания можно рекомендовать в первую очередь для студентов механических специальностей. Отметим, что в силу универсальности темы, подбор интересных практических примеров возможен для студентов всех специальностей.  [c.81]

Шестая глава посвящена важнейшему разделу механики — гамильтонову формализму. Основная цель этого раздела — представить математические аспекты гамильтоновой динамики как мощный аппарат решения широкого круга задач механики, физики и прикладной математики. В лагранжевом подходе проблема решения уравнений лежит вне рамок лагранжева формализма. Положение меняется в гамильтоновом подходе, который позволяет получить решение как каноническое преобразование начальных данных, не обращаясь непосредственно к уравнениям. Вся информация об эволюции системы содержится в одной функции — гамильтониане в результате канонического преобразования можно получить новый гамильтониан, который в определенном смысле мал . Более того, поскольку все операции ограничены рамками группы движения кососимметричной метрики, то удается создать универсальные алгоритмы построения приближенных решений. В рамках гамильтонова подхода изложены теория специальных функций, каноническая теория возмущений, метод усреднения нелинейных систем, методы анализа движения системы в быстропеременном внешнем поле и т.д. Особый интерес представляет лекция 30, в которой развит метод Дирака удвоения переменных, позволяющий представить в гамильтоновой форме систему нелинейных уравнений общего вида и получить решения уравнений, описывающих сингулярно-возмущенные системы, решения алгебраических и трансцендентных уравнений, разрешить проблему обращения интегралов и т.д. В лекции 32 приведено решение задачи о движении релятивистской частицы в гиперболическом волноводе, представляющей интерес для проблемы сепарации частиц по энергии и удельному заряду. В рамках канонического формализма рассмотрена задача о движении протонов в синхрофазотроне.  [c.8]

Общеизвестно, что не существует универсальных аналитических методов решения нелинейных дифференциальных уравнений. Эффективные аналитические методы разработаны лишь для случая, когда фазовое пространство системы представляет собой плоскость или прямую, и для случаев, когда дифференциальные уравнения движения системы мало отличаются от точно интегрируемых.  [c.94]

Методика анализа колебаний связанных осцилляторов. Выше мы рассмотрели колебания двух одинаковых связанных пружинных маятников, не прибегая к решению уравнений их движения. Однако, если жесткости пружин и массы тел имеют произвольные величины, то зачастую бывает трудно догадаться о конфигурации мод и их частотах. Поэтому представляется важным вооружиться универсальным методом, позволяющим по единой схеме провести последовательный анализ любой колебательной системы с двумя степенями свободы, являющейся системой любых связанных осцилляторов.  [c.53]

Это обстоятельство не прошло незамеченным. Один из авторов метода планов скоростей и ускорений О. Мор наметил разработку универсального приема определения кинематических параметров для механизмов произвольной структуры. Однако этот прием, основанный на преобразовании механизма в систему с несколькими степенями свободы путем изъятия из его структурной схемы нескольких стержней и комбинированием различных возможных движений полученной системы, приводил к решению системы уравнений графического решения Мор предложить не смог.  [c.127]


Отсутствие замкнутой системы уравнений турбулентного движения жидкости и, в частности, движения в пограничном слое не допускает рационального решения проблемы расчета турбулентного пограничного слоя. Если ограничиться приближенными, полуэмпирическими подходами и применением параметрических методов с большим, чем в изложенном в настоящем параграфе методе числом формпараметров, то на этом пути можно ожидать полезных результатов от расширения метода обобщенного подобия, изложенного в гл. IX для ламинарного пограничного слоя, на случай турбулентного пограничного слоя. В единственной опубликованной на эту тему статье ) можно найти вывод универсального уравнения в переменных обобщенного подобия, решением которого служит безразмерный универсальный набор профилей продольных скоростей в сечениях турбулентного пограничного слоя, не зависящий от распределений внешней скорости в различных частных задачах, и уравнения импульсов, служащего для нахождения распределения толщины пограничного слоя в заданном конкретном случае. Статья имеет программный характер и не содержит численного решения универсального уравнения.  [c.614]

В теоретических изысканиях по вопросу о турбулентном движении жидкости можно обнаружить три направления. В работах первого направления исследование ограничивается только составлением общих дифференциальных уравнений турбулентного движения и общим указанием возможности уравнять число уравнений и соотношений с числом неизвестных. В работах второго направления изучается внутренняя структура турбулентных течений. Наиболее многочисленны и плодотворны по своим результатам работы третьего направления, в которых сами теоретические изыскания элементарны и ограничены весьма частными предположениями, но доведены до конкретных результатов, согласующихся с результатами измерений при соответственном выборе значений некоторых постоянных. Благодаря теории подобия введённые постоянные могут носить в известных рамках универсальный характер, т. е. результаты решений одной группы задач могут быть перенесены с теми же значениями постоянных на другие группы при условии выполнения критерия подобия течений. Работы третьего направления составляют так называемые полуэмпирические теории турбулент ности.  [c.437]

Следует отметить, что положительное решение вопроса о существовании функций.Ляпунова не только обосновало универсальность второго метода Ляпунова, но и позволило развить теорию устойчивости движений по первому приближению, при постоянно действующих возмущениях, при вариациях параметров, при наличии запаздываний и т. п. Это объясняется тем, то наличие функций Ляпунова обычно позволяет доказать сохранение соответствующих свойств при малых изменениях правых частей уравнений (1.1).  [c.20]

Аналитическое решение уравнения движения привода для криволинейной части асинхронной характеристики возможно лишь при Мп= = onst. Во всех остальных случаях необходимо применять графо-аналитический метод. Этот метод как универсальный может быть использован и для электроприводов с коротко-замкнутыми двигателями. При Aim = onst для решения уравнения движения привода следует пользоваться для вращающего момента двигателя формулой (19), которая с достаточной точностью учитывает главнейшие процессы, происходящие в обыкновенных асинхронных двигателях. Если практически её нельзя использовать, можно применить упрощённую формулу (18) однако в ряде случаев она может давать большую погрешность.  [c.47]

Если Н > тахто(—У), то В совпадает со всем конфигурационным пространством, и задача о существовании периодических решений уравнений движения сводится к нахождению замкнутых геодезических линий гладкого риманова многообразия (М, йр). Каждой замкнутой геодезической отвечают два различных периодических решения исходной задачи (движения по этой кривой в противоположных направлениях). Они являются, конечно, вращениями. Существуют оценки числа замкнутых геодезических, зависящие отчасти от топологического строения М, отчасти от римановой метрики йр [52]. Наилучшей универсальной нижней оценкой является пока 2 [53]. Таким образом, на (2п — 1)-мерных уровнях интеграла энергии с постоянной Н > тах(—У) существуют, по крайней мере, четыре различных периодических решения.  [c.141]

Бопьшинство математических задач, возникающих в бал-дистике, связано с интегрированием уравнений движения ракеты. Для интегрирования могут применяться аналитические или численные методы. Как правило, получить точное аналитическое решение уравнений движения оказывается невозможным, поэтому область применения этого метода ограничена. Универсальными методами, с помощью которых можно найти решение уравнений движения ракеты, являются методы численного интегрирования. Наиболее распространенным численным методом является метод Рунге-Кутта. Все методы численного интегрирования довольно громоздки и трудоемки и для их реализадии необходимо применение ЭЦВМ.  [c.15]

Решение уравнения (3.9) с учетом выражения (3.8), приведенное в предыдущих параграфах, показывает, что оно хорошо описывает пристенное турбулентное движение в трубах круглого сечения. Распределение скоростей вязкого подслоя (участок 1, рис. 3.14, а) и область крупномасштабной турбулентности (область вязкой струи - участок 2) в универсальных координатах очень хорошо описываются единым уравнением (3.53) область 3 уравнением (3.53) не описывается оно идет по линии 3. Таким образом, уравнение (3.53) описывает только пристенную часть потока вязкий подслой и крупномасштабная область (струйный слой). Для крупномасштабной области парамегры переносов зависят от вязких выбросов из вязкого подслоя. Эти выбросы, имея максимальное значение около вязкого подслоя, уменьша отся до  [c.84]


Использование модели длины пути перемешивания в более сложных случаях является затруднительным. Во-первых, эмпирические константы, входящие в эту модель, оказьшаются не столь универсальными как для осевых течений во-вторых, в некоторых случаях при расчетах необходимо иметь сведения о турбулентной структуре закрученного потока. В связи с зтим в последние годы получили распространение усложненные полу-эмпирические методы, основанные на решении уравнений осред-ненного и пульсационного движений в совокупности с гипотезами полуэмпирического характера. Использование этих моделей для расчета свободных течений с поперечным сдвигом, потоков в кольцевых и криволинейных каналах, в циклонад, в закрученных струях дает удовлетворительные результаты [47].  [c.116]

Ньютон (1642—1727). На основе более ранних исследований Леонардо да Винчи и Галилея Ньютоном были сформулированы основные уравнения движения. Были введены такие фундаментальные понятия, как импульс и действующая сила. Ньютонов закон движения решил задачу о движении изолированной частицы. Он мог также рассматриваться как общее решение задачи о движении, если только согласиться разбивать любую совокупность масс на изолированные частицы. Возникла, однако, трудность, связанная с тем, что не всегда были известны действующие силы. Эта трудность была частично преодолена с помощью третьего закона Ньютона, провозгласившего принцип равенства действия и противодействия. Это исключило неизвестные силы в случае движения твердого тела, однако движение механических систем с более сложными кинематическими условиями не всегда поддавалось ньютонову анализу. Последователи Ньютона считали законы Ньютона абсолютными и универсальными законами природы, интерпретируя их с таким догматизмом, к которому их создатель никогда бы не присоединился. Это догматическое почитание ньютоновой механики частиц помешало физикам отнестись без предубеждения к аналитическим принципам, появившимся в течение XVHI века благодаря работам ведущих французских математиков этого периода. Даже великий вклад Гамильтона в механику не был оценен современниками из-за преобладающего влияния ньютоновой формы механики.  [c.387]

В отличие от него Эйлер, начав с высказываний в том же духе, приходит к другим выводам. Исследуя фактическое применение принципа к частным задачам механики, Эйлер увидел, что найти выражение, которое должно быть максимумом или минимумом, для каждой данной чйстной задачи можно только тогда, когда уже известно решение этой задачи, проведенное исходя из обычных общих принципов механики, формулирующих не конечные цели, а причинно-следственные связи явлений. Таким образом, эвристическое значение принципа оказалось ничтожным. Он не дает возможности предвидеть или установить законы даже тех механических явлений, которые всесторонне исследуются обычными дифференциальными уравнениями движения Ньютона. Как также было отмечено Эйлером, универсальность принципа наименьшего действия даже в пределах механики не является установленной и он, Эйлер, не может сколько-нибудь уверенно оценить границы его применимости. Надо отметить, что Эйлер совершенно не рассматривал вопроса об определении характера варьируемых движений.  [c.792]

Предложенный метод определения частот поперечных колебаний стержней с отверстиями приемлем для отверстий любой формы. Исследованию таких заДач посвящена работа [И]. В ней изложен универсальный способ решения подобных задач, основанный на представлении конструкции, ослабленной вырезами, сплошной моделью с тем же наружным контуром, но с физико-механическими параметрами, терпящими. разрывы однородности. Решение такой задачи получено ав- тором совместно с Ж- Ш. Шасалимовым. Поведение стержня с отверстиями авторы изучили на сплошной модели-аналоге с леременными параметрами жесткости и массы. После такой замены все соотношения, описывающие колебания стержня, записывались применительно к используемой модели. Наличие вырезов в исходных соотношениях проявлялось в том, что дифференциальные уравнения движения включают в себя изгиб-ную жесткость и массу как переменные функции координат.  [c.288]

Форма уравнений движения, используемых в численных расчётах или аналитических вычислениях, во многом предопределяет возможность успешного и экономного решения задачи. Естественно, что каждому варианту постановки задачи соответствует своя, наиболее рациональная форма записи уравнений. Поэтому здесь не будет использована некая универсальная система уравнений. Так, при решении задачи о движении тела в линейной постановке удобно использовать систему уравнений, записанную в связанных координатах. При исследовании движения тела с плоскостью симметрии предпочтительнее использовать уравнения в полусвязанной системе координат, а при изучении движения осесимметричного тела при больших углах атаки удобно записать уравнения в осях, связанных с пространственным углом атаки, что облегчает применение аналитических и асимптотических методов. Наконец, для тела произвольной формы, совершаюш,его свободное движение в атмосфере при произвольных углах атаки, наиболее экономичной, с точки зрения объёма вычислений при интегрировании, является система уравнений в направляюш,их косинусах, которая впервые была представлена в работе [41.  [c.20]

В главе АНАЛИТИЧЕСКАЯ МЕХАНИКА вы научитесь решению задач статики с помош ью принципа возможных скоростей. Вы научитесь также составлять наиболее универсальные уравнения движения динамических систем. К ним относятся обш ее уравнение динамики, уравнение Лагранжа 2-го рода и уравнения Гамильтона. Первое знакомство с этой темой немного пугает сложностью вводятся новые термины типа обобш енные координаты или виртуальные переме-щения . На самом деле все просто. Обобш енные координаты — это параметры, однозначно описываюш ие положение системы, например, углы поворота или обычные декартовы координаты. Виртуальные (или возможные) перемепдения — это бесконечно малые воображаемые перемепдения, допускаемые связями. Силы, действуюш ие на систему, будем делить на активные и реакции связей.  [c.279]

Известны различные способы определения сил взаимодействия звеньев механизмов, основанные преимущественно на представлении сил и параметров движения в проекциях на оси некоторых систем координат. К ним относятся аналитикогеометрические, матричные и другие методы, при использовании которых возникают трудно разрешимые системы уравнений. Излагаемый здесь векторный метод определения сил взаимодействия звеньев механизмов отличается следующими преимуществами инвариантностью относительно каких-либо координатных осей, простотой промежуточных преобразований, универсальностью или пригодностью для решения задач, доступных другим методам, лаконичностью представлений конечных результатов, простотой числовой реализации полученных векторных равенств.  [c.90]

Более универсальны методы расчета Р. Дайслера и К. Голдмана i[3.3—3.5], так как они свободны от ограничений по характеру зависимости физических свойств от давления и температуры. Суть двух подходов к решению задачи одинакова и заключается в численном решении системы дифференциальных уравнений энергии и движения. Различие состоит в методах расчета коэффициентов турбулентного переноса тепла и массы. Р. Дайслером принято, что коэффициенты переноса ет и Eq не зависят от изменения физических свойств, что отражается на точности расчетов при резко переменных свойствах. К. Голдман на основе выдвинутой им гипотезы о том, что изменение турбулентности в каждой точке потока зависит от изменения физических свойств только в данной точке, сумел применить для расчета распределения скоростей и коэффициента турбулентного обмена те же зависимости, что и при постоянных физических свойствах при соответствующей записи в новых переменных. Р. Дайслером и К. Голдманом принято  [c.51]


Существенные осложнения возникают в тех случаях, когда движение в расчетной схеме механизма описывается нелинейными дифференциальными уравнениями. Это имеет место при учете зазоров в системе, при рассмотрении разветвленных схем, при учете одновременной работы нескольких механизмов и т. п. Дело в том, что большинство уравнений этого вида не имеют общего решения и, кроме того, нелинейность исключаег возможность сложения общих и частных решений. В этих случаях, так же как и при линейных уравнениях с переменными коэффициентами, используются приближенные методы [4, 13] или наиболее универсальный имитационный метод определения на грузок,  [c.112]

Подь. ановка выражения для компонент скорости и и V через функцию тока в уравнение количества движения (3-1) приводит к последовательности уравнений для Рг, решение которых дает необходимые для расчета значения этих функций. В [Л. 247] показано, что в общем случае решение можно выразить через универсальные функции Рг, из которых первые пять функций имеют выражения  [c.101]

Важным для обоснования универсальности метода функций Ляпунова является вопрос об обратимости основных теорем, лежащих в основе этого метода. Действительно, если вторым методом Ляпунова пользоваться как основным при решении задач устойчивости, то должна быть уверенность, что соответствующие функции в самом деле существуют. Сам А. М. Ляпунов не рассматривал вопроса о существовании в общем случае функций, удовлетворяющих его основным теоремам. Этот вопрос впервые был поставлен Н. Г. Четаевым перед участниками его семинара по устойчивости в Каэаня и к настоящему времени разрешен трудами ряда советских и иностранных ученых. Первой работой в этой области была статья И. Г. Малкина (1930), в которой рассматрива лись автономные системы второго порядка. Было показано, что для устойчивого установившегося невозмущенного движения может не существовать знакоопределенной не зависящей от времени функции, производная которой в силу уравнений возмущенного движения была бы знакопостоянной противоположного знака однако можно найти такую функцию, зависящую явно от времени.  [c.18]


Смотреть страницы где упоминается термин Универсальные решения уравнений движения : [c.473]    [c.57]    [c.699]    [c.146]   
Смотреть главы в:

Нелинейная теория упругости  -> Универсальные решения уравнений движения



ПОИСК



Решения уравнения движения

Универсальные уравнения

Уравнения движения универсальные



© 2025 Mash-xxl.info Реклама на сайте