Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Классические задачи о стержнях

Классические задачи о стержнях  [c.255]

В некоторых работах [27] для приближенного исследования температурного ноля в системе инструмент — стружка — деталь было использовано решение классической задачи о неограниченном теплоотводе от нагреваемого торца стержня (стружка представлялась в виде сплошного стержня).  [c.63]

Решение задачи о кручении стержня прямоугольного поперечного сечения впервые получено Сен-Венаном на основании выдвинутого им полуобратного метода, и в наше время считается классическим. Следы поперечного сечения на поверхности стержня до и после деформации изображены на рис. III.15, н. Максимального значения касательное напряжение достигает в средней точке длинной стороны. По теореме  [c.98]


Прежде чем переходить к анализу полученного решения, необ ходимо уточнить постановку задачи о распространении волн в сто хаотической упругой среде. Классическое волновое уравнение (8.1) описывающее продольные волны в стержне постоянного сечения можно использовать для формулировки стохастической задачи если плотность материала р — случайная функция координаты х а модуль упругости Е — постоянная величина. Однако в мате риале, обладающем пространственной неоднородностью, оба параметра р и Е переменны. Уравнение движения при продольном растяжении (сжатии) имеет вид  [c.233]

Сложность общей пространственной постановки задачи о высокочастотных колебаниях цилиндров и пластин стимулировала большое число работ по развитию приближенных теорий, дающих результаты в более широком частотном диапазоне, чем классические теории пластин и стержней. Первая попытка построения такой теории принадлежит Рэлею, предложившему учесть инерцию поперечных движений [123, т. 1 ]. В случае изгибных колебаний балок  [c.195]

Одномерные волновые уравнения (6), (6 ) или (6") являются классическими уравнениями математической физики. К такого рода уравнениям приводит решение задачи о продольных и крутильных колебаниях упругого стержня и др. Общее решение каждого из этих уравнений, как известно, можно представить в виде суммы двух произвольных функций  [c.154]

О применении энергетического метода в задаче об устойчивости формы изгиба стержня. Обсуждается применение энергетического метода при определении критической силы и оценке устойчивости прямолинейной формы в классической задаче Эйлера об изгибе  [c.174]

При этом следует напомнить, что Герц вместе с решением задачи об ударе абсолютно твердых шаров дал условие, при котором можно пренебречь их деформациями. Очень часто авторы учебников по теоретической механике, излагающие задачу об ударе абсолютно твердых тел, являются вместе с тем авторами работ по исследованию удара деформируемых тел (например, Н. А. Кильчевский, Е. Л. Николаи). Таким образом, по крайней мере с прошлого века задача о соударении абсолютно твердых тел рассматривалась как частный случай более общей задачи. Кроме того, решение задачи о соударении упругих стержней, которое Предложено Сен-Венаном, как и решения других аналогичных задач о механическом движении материальных тел и сред, осно(вано на законах классической механики (законах Ньютона).  [c.20]


Конкретным примером может служить классическая задача Сен-Венана о кручении призматических стержней. Кинематические краевые условия в этой задаче состоят в том, что проекция поля скоростей в торцах на поперечное сечение стержня является полем вращения твердого тела, а на боковой поверхности поле скоростей может быть произвольным. При локальной постановке задачи указанных краевых условий па торцах совместно с условием отсутствия нагрузок на боковой поверхности стержня недостаточно для выделения единственного решения уравнений движения. К ним должно быть еще добавлено краевое условие на напряжения в торцах стержня. При формулировке этой же задачи с использованием принципа виртуальных мощностей не возникает необходимости в нахождении соответствующего условия на напряжения.  [c.13]

Прежде чем переходить к изложению теории А. А, Уманского, рассмотрим задачу о свободном кручении тонкостенного стержня с закрытым профилем. В этой задаче соответственно классическому решению Сен-Венана нормальные напряжения в поперечных сечениях отсутствуют, так что из формулы (25) гл. I следует, что касательное усилие  [c.108]

Если поставить подходящие краевые условия в точках л = О и X = п, то получим классическую задачу Штурма — Лиувилля. Это уравнение описывает ряд различных физических процессов, например распределение температуры в некотором стержне или амплитуду колебаний струны. В пространстве большей  [c.13]

В настоящей главе изложены методы исследования на устойчивость неоднородно-стареющих вязко-упругих стержней при различных предположениях о способах закрепления концов стержня и способах его нагружения и установлены условия устойчивости. Устойчивость изучена в нескольких принципиально отличных постановках. Принятое ниже определение устойчивости на бесконечном интервале времени соответствует классическому определению устойчивости движения динамических систем по Ляпунову. Для ряда ситуаций получены выражения критической силы потери устойчивости, сформулированные непосредственно в терминах параметров рассматриваемых задач. Представляет интерес поведение стержня на конечном интервале времени. Приведены постановки задач устойчивости на конечном интервале времени, исходящие из определений устойчивости движения динамических систем по Четаеву [1, 513]. Одна из постановок задачи устойчивости на конечном интервале времени состоит в определении ограничений на начальную погибь, при выполнении которых определяемый ею прогиб не превосходит заданного критического значения. Другая постановка задачи может быть связана с определением функционала, представляющего собой первый момент времени, именуемый критическим, к гда максимальная величина прогиба впервые достигает заданного значения.  [c.230]

Кручение стержня прямоугольного сечения. Тема о кручении стержней в течение ста с лишним лет, со времени классического мемуара Сен-Венана, была и остается предметом многочисленных исследований. Накопленные результаты необозримы, а для построения решений использовалось все многообразие точных и приближенных методов математической физики следует отметить и обратное влияние — задача кручения служила образцом, на котором развивались эти методы и проверялись возможности их эффективного использования. Далее будет приведено небольшое число решений для областей частного вида.  [c.401]

Легко убедиться непосредственной проверкой, что число Я, = О является собственным значением краевой задачи, а соответствующее ему решение зависит от четырех неопределенных действительных постоянных (при этом используется теорема существования и единственности в классических теориях плоской деформации, изгиба и кручения). Эти постоянные выражаются через величину суммарной растягивающей силы и три составляющих вектора-момента от нагрузок в поперечном сечении 5. Получается классическое решение Сен-Венана (растяжение, кручение и чистый изгиб стержня). Естественно, сюда не входит решение об изгибе поперечной силой стержня конечной длины.  [c.69]


Так, неприемлемой при решении ряда задач практики может оказаться гипотеза классической теории упругости о малости перемещений материальных элементов тела, обусловленных воздействием внешних сил, а также малости производных этих перемещений по координатам. Отсюда возникает необходимость в специфических приемах решения некоторых задач теории упругости, разрабатывается самостоятельная дисциплина теория устойчивости стержней и оболочек .  [c.15]

В наших опытах использовались термометры сопротивления с толщиной платиновой пленки 0,1 ц. нанесенной на стекло марки БД-1. Для датчиков этого типа выравнивание температур обеих сторон пленки происходит за 0,01 мксек, т. е. на изменение температуры поверхности датчик реагирует почти мгновенно. В случае быстрого протекания процесса для расчета потока в стенку важную роль играет вопрос о распределении количества тепла, поступившего к системе пластина плюс подложка. Расчеты 5] показывают, что в нашем случае теплоемкостью пленки можно пренебречь только после 10—15 мксек опыта. После 10 мксек процесса нагревания около 7,5% общего количества тепла аккумулируется пленкой. При анализе этой задачи подробно рассмотрен вопрос о правомочности вычисления теплового потока по классической формуле для полуограниченного стержня, если известна зависимость температуры контакта пленки и подложки во времени и показано, что в данном случае для вычисления потока мы можем пользоваться классическими формулами.  [c.96]

Уточненными будем называть теории, которые отличаются от обычных классических наличием в дифференциальных уравнениях дополнительных членов, расширяющих в некотором смысле области применения классических теории. Классические теории стержней основаны на гипотезе плоских сечений, пластин — на гипотезах Кирхгофа и оболочек — на гипотезах Кирхгофа—Лява. По существу, в этих теориях применяются простейшие — линейные по поперечной координате аппроксимации и не учитываются упругие поперечные взаимодействия. Классическая теория продольных колебании стержней и теория обобщенного плоского напряженного состояния пластин также являются простейшими аппроксимациями, основанными на предположениях о постоянстве характерных функций по сечению (толщине) и малости поперечных эффектов. Появление уточненных теорий обусловлено тем, что классические теории при решении ряда задач современной техники приводили к заметным погрешностям. Можно сказать, что это является следствием физического и математического несовершенства классических динамических теорий. Эти теории предсказывают, например, бесконечные скорости распространения фронтов возмущений и не улавливают элементарных упругих толщинных эффектов.  [c.5]

Классические задачи о равновесии упругих стержней, изучаемые в курсах теории упругости (С е н-В енана, Клебша, Стек-лова, Альманзи и др.), касаются призматических стержней первого типа, отдельные точки которых получают в процессе деформации малые перемещения.  [c.12]

Задача о движении системы с го-лономными связями формально всегда может быть решена, что частично объясняется возможностью исключения зависимых координат. Однако для задач с неголономными связями общего метода решения не существует. Правда, дифференциальные уравнения неголономных связей можно рассматривать совместно с дифференциальными уравнениями движения и тогда можно исключить зависимые величины с помощью метода множителей Лагранжа, который мы рассмотрим позже. Однако в более специальных случаях неголономных связей требуется индивидуальный подход к каждой задаче. При формальном изложении классической механики почти всегда предполагается, что любая имеющаяся связь является голономной. Это ограничение несколько сужает применимость общей теории, несмотря на то, что в повседневной практике нередко встречаются неголоном-ные связи. Причина этого состоит в том, что связи, наложенные на систему, обычно реализуются посредством различных поверхностей, стенок или стержней и играют заметную роль лишь в макроскопических задачах. Но современных физиков интересуют главным образом микроскопические системы, в которых все объекты (как внутри системы, так и вне ее) состоят из молекул, атомов и еще более мелких частиц, порождающих определенные силы. Понятие связи становится в таких случаях искусственным и встречается редко. Связи используются здесь лишь как математические идеализации, полезные при описании  [c.25]

Принцип Сен-Венана. Энергетическое рассмотрение. Принцип упругой эквивалентности статически эквивалентных систем сил был впервые сформулирован в применении к задаче о напряженном состоянии нагруженного по торцам призматического стержня в классическом мемуаре Сен-Венана О кручении призм (1855). Более общую формулировку этого принципа, названного принципом Сен-Венана, дал Буссинек (1885) уточнению рассмотрений Буссинека посвящены работы Мизеса (1945) и Стернберга (1954).  [c.163]

При проектировании ответственных конструкций широко используются тонкостенные оболочки и пластинки, обладающие легкостью и достаточной прочностью. Однако в настоящее время полностью завершенным можно считать лишь построение классической теории тонких оболочек, основанной на предположениях о неизменности нормального элемента (теория Кирхгофа—Лява). Основы этой теории изложены в известных монографиях советских ученых В. 3. Власова (1949), А. Л. Гольденвейзера (1953) А. И. Лурье (1948), X. М. Муштари (1957), В. В. Новожилова (1951). В связи с этим особенно актуальной является проблема обобщения и уточнения классической теории оболочек с привлечением новых механических и кинематических моделей состояния,, в достаточной степени отражающих особенности механического поведения новых материалов, связанных с их низкой сдвиговой жесткостью. Наиболее приемлемой для таких целей следует считать сдвиговую модель , предложенную впервые в задачах динамики стержней выдающимся отечественным ученым-механиком С. П. Тимошенко (1916).  [c.3]


Излагается теория малых продольных, крутильных и поперечных колебаний. Выводится дифференциальное уравнение поперечных колебаний с учетом поперечного сдвига и инерции вращения, которое более известно по публикации 1921 года на английском языке. Это уравнение сыграло огромнз роль в теории колебаний упругих систем и известно в литературе как уравнение Тимошенко, а уравнения этого вида для пластин и оболочек как уравнения типа Тимошенко. Приводится решение этого уравнения для случая собственных колебаний. Затем дается изложение результатов автора в области применения тригонометрических рядов и энергетического метода для решения задачи о поперечных вынужденных колебаниях опертого по концам стержня, а также о колебаниях стержня на упругом сплошном основании. Приводится приближенное решение задачи о колебаниях стержней переменного сечения и его сравнение с точным решением. Особенно интересен приведенный здесь результат решенной ранее автором задачи о расчете балки на поперечный удар. При этом в отличие от классической известной схемы учитывались местные деформации балки в зоне удара грузом, в связи с чем появилась возможность определить закон изменения давления в месте удара, а также время соударения.  [c.6]

Полученные результаты исследования динамики конкретных механических систем имеют, на наш взгляд, самостоятельный прикладной интерес. В задаче о движении системы жёсткое колесо — деформируемый рельс (заметка 21) обнаружено некое псевдоскольжение (на пройденном пути действительное число оборотов колеса меньше, чем геометрическое число оборотов). В отличие от известного классического крипа reep) [136], обусловленного продольными деформациями основания и (или) периферии колеса, причиной псевдоскольжения является поперечная деформация изгиба. В динамике колеса с деформируемым ободом (заметка 22) наблюдается эффект диссипации, являющийся причиной сопротивления качению. Свойства деформируемого стержня изучаются в заметках 23-25. Рассматривается схема перспективного волнового редуктора.  [c.14]

В 5.9—5.14 в основном по работам Дж. Бейзера с соавторами дано довольно полное изложение нелинейных одномерных волновых движений для идеальных проводников сначала определены характерные скорости и области ( 5.10), затем получены соответствующие условия на скачках Ренки-на —Гюгонио ( 5.11), дана классификация возможных решений в виде ударных волн ( 5.12) и введены некоторые элементарные понятия о простых волнах ( 5.13). Качественный анализ в рамках развитой теории магнитоупругих ударных волн и простых волн дан в 5.14 для задачи о так называемом магнитоупругом поршне (решение в линейном приближении будет также получено геометрическими методами 5.8). В заключение, чтобы почувствовать некоторые особенности анализа магнитоупругой устойчивости токонесущих структур, рассмотрен классический пример растянутого проводящего стержня и токонесущих пластин.  [c.266]

При построении теории тонкостенных стержней принимают в качестве исходной классическую задачу Сен-Венана о чистом кручении и, в соответствии с этим, из шести элементов деформации срединной поверхности стержня (относительных удлинений и Вд, сдвига угз компонентЭВ изменения кри-  [c.28]

Предположение о малости перемещения и поворотов влечет соблюдение малости удлинений и сдвигов. Однако обратное утверждение несправедливо. В то же время существует только общее рассуждение о критерии малости перемещений относительно линейного размера тела. Есть основание полагать, что для тел с микроструктурой необходимо сравнивать перемещения с размерами структурных элементов. Подчеркнем, что в основе классической теории малых деформаций лежит допущение о малости поворотов и перемещений. Если в основу положить малость удлинений и сдвигов по сравнению с единицей, то перемещения и повороты могут быть значительны. Эти преднолон ешш соответствуют линейной теории упругости, в которой реигаются задачи упругого равновесия, сильного изгиба стержней, оболочек и т, п, В этом случае тензор деформации имеет вид  [c.100]

История вопроса, насыщенная дискуссиями и порой драматическая, восходит, конечно, к классическим трудам Л. Эйлера [331 ] о выпучивании упругих сжатых стержней. В фундаментальных монографиях и обзорных работах [4, 46, 51, 52, 60, 85, 103, 104, 116, 130, 134, 189, 194, 204, 206, 222, 240,265, 300, 311, 321] можно найти сведения об эвлюции взглядов на проблему устойчивости, обсуждение различных подходов к постановке задачи — статического, энергетического, метода неидеальностей, динамического метода и областей их применимости, сопоставление экспериментальных и расчетных теоретических результатов, обсуждение путей дальнейшего развития теории и т.д. Следует отметить, что большинство глубоких результатов в задаче устойчивости относится к однородным изотропным оболочкам и получено в рамках гипотезы недеформируемых нормалей. Несмотря на значительные достижения [52, 60, 117, 265 и др. ], задача устойчивости слоистых анизотропных композитных оболочек с ограниченной поперечной сдвиговой жесткостью разработана с меньшей полнотой и требует дальнейших исследований.  [c.59]

О. У. Ноизпег и W. К. Тзо [1.195] (1962) сравнивали теории Тимошенко и Бе рнулли — Эйлера применительно к задаче динамической потери устойчивости стержня и пришли к выводу, что классическая теория достаточно хорошо описывает доминирующие формы колебаний стержня.  [c.75]


Смотреть страницы где упоминается термин Классические задачи о стержнях : [c.715]    [c.208]    [c.251]    [c.111]    [c.342]   
Смотреть главы в:

Механика упругих тел  -> Классические задачи о стержнях



ПОИСК



Газ классический

Задачи для стержней



© 2025 Mash-xxl.info Реклама на сайте