Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Ползучесть Понятие

Поле температур — Определение 206 Ползучесть — Понятие 254 Полиамид 6 40 — Коэффициент трения 124 — Температура рабочей поверхности ТПС 124  [c.327]

Нанесение S. 134 Ползучесть — Понятие 2.16 Полиамиды 3.603, 612—614 Полимеры 3.599, 600 Полировальные круги 4.96 Полировальные ленты 4.98 Полирование 4.80, 95  [c.643]

Кривая ползучести — Понятие 187 — Свойства 187 — Сопоставление эксперимента и расчета 194 — Схема 188  [c.483]


Устойчивость есть свойство процессов движения и равновесия систем, в том числе медленных процессов типа ползучести. Под устойчивостью понимают их способность сохранять состояние равновесия или процесса движения во времени t под действием малых возмущений. Под неустойчивостью понимают способность систем при действии весьма малых возмущений получать большие перемещения. Понятие устойчивости, его определение и критерий должны быть неотделимы от практического представления о потере устойчивости конструкций и их элементов как о катастрофическом развитии их деформаций и перемещений.  [c.318]

Отдельная глава посвящена расчету элементов конструкций с учетом ползучести расширен по сравнению с другими сборниками задач состав задач по вопросам усталостной прочности включен параграф, посвященный расчету тонкостенных стержней замкнутого профиля на стесненное кручение. В отдельные параграфы выделены вопросы нелинейного деформирования элементов конструкций. В главе Устойчивость и продольно-поперечный изгиб стержней помещены задачи, которые помогут студентам приобрести не только навыки расчетов на устойчивость, но и уяснить понятие критического состояния системы и применяемого в исследовании устойчивости метода Эйлера. Креме того, решение этих задач подготовит студентов к более успешному освоению курса устойчивости сооружений.  [c.3]

Замечание. Легко проверить [170], что, если компоненты о - непрерывно дифференцируемы по координатам Х , то из вариационного неравенства (4.20) следует, что оу удовлетворяют уравнениям (4.12), (4.14) и (4.15). Это означает, что понятие обобщенного решения задачи теории ползучести действительно является обобщением понятия решения краевой задачи теории ползу чести.  [c.43]

Как правило, требуемый срок службы летательных аппаратов в авиационной технике значительно выше, чем в космической. В прошлом космические аппараты предназначались для разового использования. Основные силовые нагрузки оказывались на конструкцию в течение первых минут при старте, а основные термические нагрузки имели место либо на старте, либо при входе в плотные слои атмосферы (в случае возвращения аппарата). Деградацию материала под действием повторяющихся нагрузок (усталость) или постоянной нагрузки при повышенной температуре (ползучесть) можно было серьезно не учитывать. Таким образом, до последнего времени в космической технике практически игнорировались принятые в авиастроении понятия срока службы, продолжительности безотказной работы и остаточной прочности.  [c.96]


Большинство конструкций, работающих при высоких температурах, проектируется таким образом, что в течение всего срока эксплуатации материал находится в стадии установившейся ползучести или даже в переходной стадии (т. е. в условиях, когда ползучесть описывается кривой 1 на рис. 1). При проектировании конструкций часто пользуются понятием предела ползучести . Эта величина в какой-то мере зависит от стационарной или минимальной скорости ползучести, поскольку определяется как напряжение, вызывающее допустимую деформацию (обычно 2—5%) после 100- или ЮОО-ч нагружения. Допустимые напряжения при более продолжительных экспозициях определяют, как правило, путем экстраполяции, например по методу Ларсона и Миллера [12]. Следовательно, при таких нагрузках, когда основным типом деформации является ползучесть, стойкость к ползучести означает низкую установившуюся скорость деформации или, наоборот, высокое значение предела ползучести (при условии достаточно малых первичных деформаций).  [c.11]

Прежде чем перейти к систематизации литературных данных по влиянию среды на ползучесть и разрушение материалов, введем в целях удобства дальнейшего изложения понятия показателя сопротивления ползучести Рс, показателя длительной прочности Рг (и показателя пластичности разрушения Ро-  [c.12]

Воздух выбран в качестве стандартной среды сравнения исключительно в силу традиции, поскольку большинство испытаний и исследований ползучести и разрушения материалов под напряжением проводится на воздухе. Подчеркнем, что при этом имеется в виду лабораторный воздух. Этому определению не удовлетворяют разреженная атмосфера (частичный вакуум) или воздушная среда с искусственно регулируемым содержанием чистого кислорода. Тем не менее понятие лабораторного воздуха , к сожалению, все же слишком расплывчато, так как воздух может быть  [c.12]

Понятие о ползучести металлов при одноосном напряженном состоянии приведено в 17. Явление ползучести наблюдается и в дисках паровых и газовых турбин, работающих при температуре выше 400—500° С. Ползучесть приводит с течением времени к перераспределению напряжений в диске, которое продолжается до наступления установившейся ползучести.  [c.256]

При высоких температурах, когда уже достаточно полно проявляются реологические эффекты, вместо обобщенной диаграммы циклического деформирования вводится понятие обобщенной кривой длительного циклического деформирования, предполагающей наличие семейства изохронных кривых циклической ползучести при соответствующем нагружении.  [c.44]

Для построения кривых деформирования п ползучести при произвольных программах неизотермического нагружения с выдержками введем понятие память матерпала Л/ как совокупность векторов р1 — наборов четырех чисел [г,- е 9 С,-], характеризующих состояние материала в один из предшествующих моментов поворота, имеющих значение для последующего поведения материала  [c.201]

С зависимостью е от о связано понятие предела ползучести — напряжения, при к-ром скорость П. м. имеет нек-рую заданную величину. При малых ст, когда 6 и накапливаемая деформация б весьма малы, отсутствует определённость относительно того, какая измеряется скорость, связанная со стадиями I и II или только со стадией II. Поэтому иногда под пределом ползучести понимают напряжение, к-рое вызывает. задан-иую скорость П. м. через заранее установленный промежуток времени.  [c.11]

В упомянутые десятилетия кафедрой заведовали профессора Ю. И. Ягн и П. А. Павлов — выдающиеся отечественные механики, известные своими изысканиями в области критериев пластичности и разрушения, в проблемах много- и малоцикловой усталости, ползучести и длительной прочности металлов. В учебнике по возможности учтена их точка зрения по отмеченной тематике. Авторы придерживались их трактовки при изложении понятий обобщенных сил и обобщенных перемещений, инженерных расчетов ка удар и трещиностойкость.  [c.3]

Так, более подробно разобраны понятия тензоров напряжений и деформаций и их разложение на шаровой тензор и девиатор, добавлен закон Гука в тензорной форме. В новой, V главе рассматриваются простейшие задачи теории упругости чистый изгиб прямого призматического стержня и кручение круглого стержня постоянного сечения. В главе VI добавлен расчет балки-стенки. Далее добавлены следую-ш,ие параграфы Понятие о действии сосредоточенной силы на упругое полупространство , Понятие о расчете гибких пластинок , Понятие о расчете гибких пологих оболочек . Переработан раздел о математическом аппарате теории пластичности, добавлено понятие о теории пластического течения, дано понятие о несущей способности балок и плит на основе модели жесткопластического материала. Вновь написаны главы ХП1 и XIV об основных- зависимостях теории ползучести и даны простейшие задачи теории ползучести.  [c.3]


В теории ползучести вводится понятие скорости ползучести, численное Рис. 3.25 значение которой можно определить по  [c.64]

Такие понятия, как ползучесть и жаропрочность, тесно связаны между собой и отделить их друг от друга не представляется возможным.  [c.136]

При таком подходе к понятию времени облегчается решение многих эволюционных задач. Мы используем эти представления для решения задачи прогнозирования долговременных характеристик прочности при работе в условиях ползучести. В предыдущем параграфе было показано, Что при циклическом нагружении прогнозирование долговечности материала требует знания параметров точки бифуркации (пороговой скорости движения трещины В и коэффициента интенсивности напряжений А),  [c.203]

Под живучестью понимают свойство объекта, состоящее в его способности противостоять развитию критических и существенных отказов и дефектов, повреждений и несущественных отказов при установленной системе технического обслуживания и ремонта. В различных отраслях понятие живучести трактуется по-разному. Например, сохранение несущей способности элементов конструкций при возникновении в них усталостных трещин, размеры которых не превышают заранее заданных значений распространение пластических деформаций по всему сечению элемента, накопление предельно допустимой деформации ползучести и т.п.  [c.399]

Структурные параметры и их количественная характеристика могут трактоваться и как реальные физические объекты (например, соотношения фаз, плотность дислокаций, число и размеры микродефектов), и как некоторые обобщенные механические понятия (энергия пластического деформирования, компоненты деформации ползучести).  [c.115]

Ползучесть - Обобщенные модели в расчетах нестационарно нагруженных конструкций 125-127 - Понятие 109, 110  [c.611]

Основными задачами, которые приходится решать каждому конструктору при анализе прочности и выборе средств предотвращения разрушения конструкции, являются установление наиболее вероятных из разнообразных видов механического разрушения, встречающихся в инженерной практике, и оценка возможности разрушения конструкции в процессе ее эксплуатации. В соответствии с этим в книге сначала приводятся определения и указываются характерные признаки различных видов механического разрушения, а затем наиболее важным из них посвящаются целые главы. Вследствие большого практического значения очень подробно рассматривается усталостное разрушение, причем уделяется внимание как многоцикловой, так и малоцикловой усталости. Достаточно подробно рассматриваются также хрупкое разрушение, ползучесть, разрыв при ползучести, фреттинг-усталость, фреттинг-износ, удар, выпучивание и некоторые другие виды разрушения. Отдельная глава посвящена концентрации напряжений. Основные понятия механики разрушения излагаются при описании хрупкого и усталостного разрушения.  [c.7]

Под эффектами циклической релаксации и циклической ползучести обычно понимают смещение петли пластического гистерезиса, происходящее в процессе повторных нагружений. Если цикл ограничен по деформациям (жесткое нагружение), при таком смещении изменяется его среднее напряжение, это называют циклической релаксацией. При ограничении цикла по напряжениям происходит постепенное накопление деформации (циклическая ползучесть). Любой из указанных эффектов, в зависимости от условий, в большей или меньшей степени может проявляться в процессе стабилизации диаграммы циклического деформирования. У циклически стабильных (стабилизированных материалов) они наблюдаются в экспериментах лишь при наличии асимметрии в условиях нагружения, которая при этом может быть даже малозаметной (настолько, что цикл ошибочно полагают симметричным). Упрощения, которые пришлось использовать, чтобы получить уравнение состояния (3.30), позволяющие достаточно просто и в то же время адекватно (см. 15) отразить основные закономерности повторно-переменного деформирования, исключили из рассмотрения эффекты циклической релаксации и циклической ползучести. Поэтому, строго говоря, эти уравнения справедливы лишь в условиях симметричного цикла (понятие  [c.67]

Вернемся к модели циклически стабильного материала. Вариант, рассмотренный в гл. 1—4, основан иа предположении о существовании предельной упругой деформации определяющей экстремум на кривой деформирования. Однако известно, что на диаграмме истинных напряжений касательный модуль ие достигает нулевого значения [55 J, а условная диаграмма отражает лишь неустойчивость процесса деформирования образца при достижении напряжением некоторого уровня. С другой стороны, условным является и понятие установившейся ползучести, при которой скорость неупругой деформации постоянна и определяется лишь текущим напряжением  [c.117]

Очевидно, что в рассмотренной выше оценке повреждаемости не учитывается влияние ее на процесс ползучести, Ю. Н. Работ-нов [1051 предложил учитывать это влияние. Он ввел понятие поврежденности oj (со = 1 —-ф) и принял, что скорости деформации ползучести и поврежденности являются функциями напряжения и поврежденности  [c.58]

Определение, понятие 18 Предел ползучести — Определение 16, 17  [c.711]

Цианирование 191, 194 Ползучесть — Понятие 16 Полиамиды 603, 612—614 Полнмц)ы 599, 600 Полутомпак 419  [c.710]

Весьма важной характеристикой механических свойств твердых тел является их долговечность под нагрузкой, т. е. время до разрушения ip под действием постоянного приложенного напряжения. Как правило, прочность данного материала при испытании на ползучесть нельзя охарактеризовать каким-либо одним параметром тело может разрушаться при различных напряжениях, причем с уменьшением приложенного напряжения долговечность ip резко возрастает. Инымп словами, однозначное понятие прочность (определяемое, например, при испытаниях на разрыв с определенной постоянной скоростью растяжения) заменяется в случае испытаний на ползучесть понятием длительной прочности , т. е. функциональной зависимостью между временем до разрушения н приложенным напряжением Р.  [c.273]


Из сложного комплекса свойств, которыми должны обладать жаропрочные стали и сплавы, основными являются высокие жаропрочность и сопротивление ползучести. Понятия о характеристиках жаропрочности и ползучести — пределах длительной прочности и ползучести даны в главе I. Во многих случаях от жаропрочных сталей и сплавов требуется также высокая жаростойкость (окали-ностойкость), т. е. способность противостоять при температурах выше 550° С образованию на поверхности окислов или других сое-динений. Жаростойкие стали обычно дредназначаются, для работы в ненагруженном л- 1И ла брнаг.руженш м. состоянии.  [c.185]

Рассматривая ползучесть как некоторый вид квазивязкого течения металла, мы должны допустить, что в каждый момент скорость ползучести при данном структурном состоянии определяется однозначно действующим напряжением и температурой. Структурное состояние — это термин, чуждый по существу механике, поэтому применение его в данном контексте должно быть пояснено более детально. Понятие о структурном состоянии связано с теми или иньгаи физическими методами фиксации этого состояния — металлографическими наблюдениями, рентгеноструктурным анализом, измерением электрической проводимости и т. д. Обычно физические методы дают лишь качественную характеристику структуры, выражающуюся, например, в словесном описании картины, наблюдаемой на микрофотографии шлифа. Иногда эта характеристика может быть выражена числом, но это число бывает затруднительно ввести в механические определяющие уравнения. В современной физической литературе, относящейся к описанию процессов пластической деформации и особенно ползучести, в качестве структурного параметра, характеризующего, например, степень упрочнения материала, принимается плотность дислокаций. Понятие плотности дислокаций нуждается в некотором пояснении. Линейная дислокация характеризуется совокупностью двух векторов — направленного вдоль оси дислокации и вектора Бюргерса. Можно заменить приближенно распределение большого числа близко расположенных дискретных дислокаций их непрерывным распределением и определить, таким образом, плотность дислокаций, которая представляет собою тензор. Экспериментальных методов для измерения тензора плотности дислокаций не существует. Однако некоторую относительную оценку можно получить, например, путем подсчета так называемых ямок травления. Когда линия дислокации выходит на поверхность, в окрестности точек выхода имеется концентрация напряжений. При травлении реактивами поверхности кристалла окрестность точки выхода дислокаций растравливается более интенсивно, около этой точки образуется ямка. Таким образом, определяется некоторая скалярная мера плотности дислокаций, которая вводится в определяюпще уравнения как структурный параметр. Условность такого приема очевидна.  [c.619]

В аналитических и экопериментальных исследованиях остаточных напряжений в волокнистых композитах используются два подхода — уже упомянутая выше модель коаксиальных цилиндров и модели регулярных типов расположения волокон. Первый подход основан на довольно простых математических соотношениях и поэтому применялся более широко [14, 27, 32]. Он был развит в работе [27] и позволил рассмотреть, наряду со свойствами, зависящими от температуры, влияние пластического течения в матрице, подверженной деформационному упрочнению. В этой и других работах пользуются не вполне определенным понятием температура релаксации внутренних напряжений имеется в виду температура, ниже которой влияние ползучести ослабевает и могут возникать напряжения значительной величины. Хекер и др. f27] устранили эту неточность, определив температуру релаксации внутренних напряжений путем сопоставления расчетных результатов с данными экспериментального определения остаточных напряжений в модельных композитах типа коаксиальных цилиндров.  [c.66]

Это замедление, по-видимому, можно более четко описать, используя понятие внутреннего обратного напряжения [уравнение (2)]. Если считать, что в сплаве на воздухе и в вакууме действует один механизм ползучести, и принять для всех испытаний п = 4, как предсказывают теории ползучести, контролируемой возвратом [13], то получим значения Ог, приведенные в табл. 2. Очевидно, что окисление на воздухе повышает внутреннее напряжение. При 760 °С 01 на воздухе равно 245, а в вакууме 117 МПа. Сравнив эти значения, можно предположить, что среднее внутреннее напряжение, связанное с поверхностной оксидной пленкой, для рассматриваемого поликристаллического сплава равио 128 МПа. Это, по-видимому, означает, что при испытаниях на ползучесть на воздухе величина деформации в области около границы оксид/ /сплав при данном размере зерна (300 мкм) может иметь очень важное значепые.  [c.36]

Зкспериментальное определение материальных параметров эволюционных уравнений накопления повреждений производится во второй фазе процесса (фаза распространения), начиная с которой проявляется значимое влияние поврежденности на физико-механические характеристики материала, при одновременном моделировании процессов деформирования в этой фазе с использованием соотношений термовязкопластичности. Метод закгаочается в том, что все отклонения результатов численного моделирования процессов деформирования (без учета влияния поврежденности материала) от экспериментальных в фазе распространения приписываются влиянию поврежденности (уменьшение модуля упругости, падение амплитуды напряжений при постоянной амплитуде деформаций, увеличение амплитуды деформаций при постоянной амплитуде напряжений, увеличение скорости деформации ползучести при постоянном напряжении на третьей стадии ползучести). В работе [2] для определения закономерности изменения и при растяжении используется понятие эффективного напряжения  [c.387]

Как было отмечено выше, анализ работы конструкции, у которой свойства материала описываются структурной моделью, может быть сведен к анализу другой, соответственно усложненной идеально вязкой (или идеально пластической) конструкции. Последние образуют специальный класс идеально вязких конструкций, поскольку в общем случае они могут обладать определенными особенностями. Если иметь в виду структурную модель с бесчисленным множеством подэлементов (непрерывное распределение параметров 2), то для таких конструкций область упругой работы представляет условное понятие как бы ни была мала нагрузка, всегда найдется настолько слабый нодэлемент, который деформируется неупруго. С другой стороны, и предельное состояние может быть определено лишь после введения некоторого допуска. Если у такой модели допускается наличие идеально упругого подэлемента (см. 23), то не существует ни предельного напряжения при заданной скорости деформации, ни стационарной ползучести с ненулевой скоростью. Соответственно при регулярном циклическом нагружении моделируемой конструкции в стационарном цикле возможно лишь знакопеременное неупругое деформирование. Упругая приспособляемость и постепенное накопление деформации (прогрессирующее формоизмене-  [c.205]

В теориях неупругостй нет условного разделения деформаций пластичности и ползучести здесь введено понятие суммарной деформации неупругостй, т. е. принято, что полная деформация состоит из упругой и неупругой  [c.260]


В предыдущих главах мы ознакомились с материалами, обнаруживающими простые свойства упругости, вязкости и более сложное свойство пластичности, которое может быть понято только вместе со свойством упругости и, наконец, также с более сложными свойствами уируго-вязкости жидких и твердых тел. Эти материалы были идеализированы моделями гукова, ньютонова, сен-венанова, максвеллова и кельвинова тел. Из них только три первых являются элементарными. При помощи структурных формул было показано, какое отношение качественно имеют две последние модели к двум первым. Были постулированы количественные реологические соотношения между т, т, у и у > в которых фигурируют три параметра [х, и сГт, представляющие собой реологические коэффициенты . Эти результаты приводят к довольно хорошему приближению для описания поведения реальных материалов Рассмотрим для примера такой материал, как дорожный асфальт. Прежде всего, асфальт обладает упругостью, что делает его пригодным в качестве строительного материала. Соответственно в первом приближении можно рассматривать асфальт как упругое гуково тело. И в действительности инженеры-дорожники основывают свои расчеты почти исключительно на упругости. Только когда ползучесть совершенно необходимо учитывать, они прибегают ко второму приближению и рассматривают асфальт как максвелловскую жидкость. Однако нужно заметить, что асфальт также проявляет запаздывание упругости. Чтобы принять в расчет и это свойство, нужно перейти к третьему приближению, более сложному, чем максвелловская жидкость.  [c.170]

Различие поведения растворов и бетонов (у первых скорость ползучести понижается с увеличением количества заполнителя, у вторых, наоборот, увеличивается) может быть понято по аналогии с поведением смеси воды и песка. Когда песок сухой, его сцепление весьма мало его внутреннее трение, измеряемое углом естественного откоса, тоже сравнительно мало. Если добавить немного воды, сцепление песка увеличивается, и существует оптимум содержания соды, что используют мальчики, когда строят замки на берегу моря. После оптимума вода понижает сцепление и 100%-пая вода течет, конечно, свободно. Полная кривая будет поэтому проходить черег нули при Су, = 1 и Сщ = О, где есть объемная концентрация воды При убывании Су, от 1 до О кривая будет возрастающей у ближайшей конца и убывающей у дальнего конца. В нашем случае роль водь играет цемент. Когда количество заполнителя возрастает и количе ство цемента понижается, раствор лежит на возрастающей, а бетоз на ниспадающей части криво11.  [c.196]

Метод осреднения применяется к решению квазистатически Е задач линейной теории вязкоупругости для композитов. Особое внимание уделяется теории нулевого приближения. Для слоистых-вязкоупругих композитов тензоры эффективных ядер релаксации и ползучести находятся в явном виде. Выясняются особенности строения этих тензоров в случае структурной анизотропии. Вводится понятие канонических вязкоупругих операторов и описывается схема экспериментального определения их ядер. Дается описание метода численной реализации упругого решения и на" двух конкретных задачах показывается его применение. Даются постановки связанной задачи термовязкоупругости для физичес- ки линейных композитов и квазилинейной теории вязкоупругости, для композитов.  [c.268]


Смотреть страницы где упоминается термин Ползучесть Понятие : [c.481]    [c.39]    [c.42]    [c.42]    [c.581]    [c.14]    [c.144]    [c.432]    [c.65]    [c.109]    [c.100]    [c.644]   
Полимеры в узлах трения машин и приборов (1980) -- [ c.161 ]

Несущая способность и расчеты деталей машин на прочность Изд3 (1975) -- [ c.187 ]

Термопрочность деталей машин (1975) -- [ c.5 ]



ПОИСК





© 2025 Mash-xxl.info Реклама на сайте