Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Основные понятия механики разрушения

Основными задачами, которые приходится решать каждому конструктору при анализе прочности и выборе средств предотвращения разрушения конструкции, являются установление наиболее вероятных из разнообразных видов механического разрушения, встречающихся в инженерной практике, и оценка возможности разрушения конструкции в процессе ее эксплуатации. В соответствии с этим в книге сначала приводятся определения и указываются характерные признаки различных видов механического разрушения, а затем наиболее важным из них посвящаются целые главы. Вследствие большого практического значения очень подробно рассматривается усталостное разрушение, причем уделяется внимание как многоцикловой, так и малоцикловой усталости. Достаточно подробно рассматриваются также хрупкое разрушение, ползучесть, разрыв при ползучести, фреттинг-усталость, фреттинг-износ, удар, выпучивание и некоторые другие виды разрушения. Отдельная глава посвящена концентрации напряжений. Основные понятия механики разрушения излагаются при описании хрупкого и усталостного разрушения.  [c.7]


Основные понятия механики разрушения  [c.159]

Наряду с классическими приемами оценки прочности элементов конструкций при сложном напряженном состоянии даются основные понятия механики разрушения — быстро развивающегося направления оценки прочности тел, имеющих трещины. Эти вопросы имеют важное значение для анализа работы существующих и проектируемых конструкций.  [c.3]

Для подготовки инженеров-механиков по авиационной технологии вопросы прочности элементов конструкций как фактора их надежности имеют существенное значение. Действующая программа курса сопротивления материалов предусматривает ознакомление студентов лишь с основными понятиями вероятности разрушения в разделе о расчете на усталость.  [c.289]

В настоящей главе даются лишь начальные представления об условиях распространения трещин, основанные на решениях теории упругости и составляющие так называемую линейную механику разрушения. В основном они справедливы лишь тогда, когда зона нелинейных упругопластических деформаций у острия трещины невелика по сравнению с ее длиной. В данной главе можно познакомиться с явлением роста трещины и с рядом характеризующих его понятий. Это позволит в случае необходимости самостоятельно воспользоваться обширной литературой, существующей по механике разрушения, как линейной, так и нелинейной [см. 4, И, 24, 38 и др.].  [c.370]

Схема температурных зависимостей механических свойств при статическом растяжении представлена на рис. 3.1. На ней, так же как и на рис. 1.5, приведены зависимости истинного сопротивления разрыву 5к, предела прочности Sb, предела текучести St, сужения шейки if) и доли вязкой части излома в месте разрушения F . Эта диаграмма детализирует приведенные в 1 температурные зависимости в связи с характеристиками вязкости разрушения Ki - В области хрупких разрушений они описываются закономерностями линейной механики разрушения, основные понятия которой изложены выше. Предельные значения коэфф --10  [c.40]

Разрушение и усталость композиционных материалов — это, очевидно, одна из наиболее спорных и, несомненно, одна из наиболее важных областей технологии, требующая исследования и понимания, когда этот класс материалов необходимо использовать — например, при создании конструкций. Применение методов линейной механики разрушения к этим материалам ограничено не только из-за анизотропии и неоднородности структуры композитов, но также из-за способности отдельных компонентов деформироваться пластически. Кроме того, механизмы повреждения композитов совершенно отличны от механизмов повреждения однородных и изотропных материалов, и, таким образом, основные понятия и допущения, которые применимы к более простым материалам, здесь несправедливы. В этом томе я попытался объединить исследователей различных специальностей для обсуждения и обобщения основных понятий, теорий и экспериментов, разработанных до настоящего времени, в целях лучшего понимания разрушения и усталости композитов.  [c.9]


Основные понятия линейной механики разрушения обычно применяют к гомогенным изотропным материалам. Корректность применения этой теории к неизотропным гетерогенным материалам (например, ком-  [c.151]

Кратко рассматриваются Теоретические основы линейной механики разрушения для введения понятий коэффициентов интенсивности напряжений и скорости освобождения упругой энергии. В работе установлено, что метод граничных интегральных уравнений (ГИУ), применяющийся для решения задач теории упругости, является эффективным и точным средством, позволяющим вычислять значения коэффициентов интенсивности напряжений и скорости освобождения упругой энергии в двух- и трехмерных задачах механики разрушения. Рассматриваются основные представления метода ГИУ и описывается распространение метода на задачи механики разрушения, В двумерном случае представлены численные результаты, полученные при помощи построения специальной функции Грина для задач о трещинах. В трехмерном случае приводятся результаты для поверхностной трещины, найденные путем стандартного решения по методу ГИУ. Указываются некоторые задачи и цели дальнейших исследований.  [c.46]

Деформация и различные другие проявления механических свойств твердых тел являются результатом воздействия некоторых внешних, по отношению к данному элементу тела, факторов. В простейшем случае такими внешними факторами являются механические воздействия. Механические воздействия могут быть заданы, например, системой сил, напряжениями, перемещениями (прогиб, закручивание и т. д.) или работой, последнее чаще при ударных воздействиях. Механические напряжения могут быть вызваны и немеханическими воздействиями тепловыми, магнитными и др. Для оценки подобны.х воздействий на механические свойства их обычно выражают в напряжениях, например стеснение температурного расширения. Для понимания закономерностей деформации, разрушения и механических свойств и особенно для управления (регулирования) процессами деформации и разрушения необ.ходимо привлечение некоторых основных понятий и методов механики.  [c.25]

Основные понятия и уравнения механики разрушения  [c.54]

В настоящее время имеется большое количество работ, посвященных анализу прочности и долговечности материалов и элементов конструкций. В ряде публикаций проблема прочности и разрушения рассматривается с феноменологических позиций— на базе концепций механики деформируемого твердого тела. К другому направлению относятся работы по развитию физики прочности и пластичности материалов, в которых анализ рузрушения проводится на атомарном и дислокационном уровнях, т. е. на микроуровне. В этих исследованиях весьма затруднительно включение в параметры, управляющие разрушением, таких основных понятий механики, как, например, тензоры деформаций и напряжений или жесткость напряженного состояния. Поэтому в последнее время интенсивное развитие получило направление, которое пытается соединить макро- и микроподходы при описании процессов повреждения и разрушения материала и формулировке критериев разрушения.  [c.3]

Некоторые общие положения. Основным понятием механики хрупкого разрушения является трещина, начальное образование которой не рассматривается. Изучается лишь вопрос равновесия и распространения, трещины от тонкой начальной. Принципиаль-  [c.574]

Результаты исследований Гриффитса, Ирвина и Орована значительно способствовали установлению соответствия между теорией и экспериментом и пониманию поведения металлов под нагрузкой. Итогом этих исследований явилась разработка двух основных используемых в технике теорий, а именно теории дислокаций и механики разрушения. Были предложены также и другие теории, использующие понятия дефектов, вакансий и блочных дефектов. Однако ни одна из них не могла полностью объяснить несоответствия между теоретическими и экспериментальными значениями прочности без многих сомнительных предположений, пока не была создана теория дислокаций.  [c.47]


Следует отметить, что основные положения механики линейноупругого разрушения можно развивать и излагать независимо, используя либо понятие коэффициент интенсивности напряжений /С , как это было сделано ранее, либо понятия сила сопротивления увеличению размеров треш,ины или скорость освобождения энергии деформации G — энергии деформации, освобождаемой при малом приращении длины трещины. Выражение для нее дается последним слагаемым формулы (3.10). Хотя целям и задачам этой книги более соответствует подход, в котором используется понятие коэффициента интенсивности напряжений, в некоторых случаях целесообразнее использовать понятие скорости освобождения энергии деформации. Например, это имеет место в случаях, когда одновременно реализуются различные типы деформирования трещины, при обработке результатов испытаний с заданными перемещениями или при применении некоторых методов механики упругопластического разрушения. Понятие критического значения скорости освобождения энергии деформации G , при котором трещина становится неустойчивой и распространяется самопроизвольно, освещено в литературе (см., например, [18] или [191) его можно непосредственно связать с понятием критического коэффициента интенсивности напряжений Кс- Коэффициент интенсивности напряжений К и скорость освобождения энергии деформации G связаны между собой соотношением  [c.71]

Линейная механика разрушения (точнее, механика развития магистральных трещин) описывает хрупкое разрушение, происходящее в результате роста трещины при отсутствии заметных пластических деформаций у вершины трещины. В этом случае справедливы асимптотические формулы для напряжени11 и деформаций ((40) —(45) И), и задачу о распространении трещины можно сформулировать в терминах коэффициентов интенсивности напряжений. Таким образом, основной признак линейной механики разрушения — возможность изучения поведения тела с трещиной с помощью коэффициентов интенсивности напряжений, причем само понятие этого коэффициента имеет физический смысл.  [c.117]

Монография состоит из восьми глав, дополнения и списка литературы. В первой главе приведены краткие сведения об основных положениях классической механики разрушения. Дан краткий обзор литературы по механике разрушения, в основном динамической. Исследована структура полей напряжений в окрестности фронта движущейся трещины. Введены понятия динамических коэффициентов иитенсивности напряжений, не зависящих от пути интегрирования интегралов и Г-иитегралов. Рассмотрены силовые и энергетические критерии разрушения при динамических нагрузках.  [c.6]

Во второй главе Основные понятия и уравнения механики разрушения, — которая по сугцеству является вводной в собственно механику разругпения, мы воспроизводим классические результаты по анализу напряженно-деформированного состояния вблизи вергпины трегцины каждого из трех основных типов. Здесь также помимо двумерных задач (см. разделы и  [c.11]


Смотреть страницы где упоминается термин Основные понятия механики разрушения : [c.158]    [c.2]    [c.167]    [c.192]    [c.235]    [c.254]   
Смотреть главы в:

Композиционные материалы  -> Основные понятия механики разрушения



ПОИСК



Механика разрушения

Основные понятия механики

Понятие о механике разрушения



© 2025 Mash-xxl.info Реклама на сайте