Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Свойства некоторых сталей и чугунов при

Свойства некоторых сталей и чугунов при =20°С  [c.186]

Магнитный анализ применяется при исследовании структуры и состава стали и чугуна, а также для определения толщин немагнитных покрытий на ферромагнитных основах и некоторых других свойств ферромагнитных сплавов.  [c.177]

Основные преимущества алюминиевых сплавов, определяющие область их применения — малая плотность (2,7—3,0 г/см ) при достаточно высоких механических свойствах. Однако они уступают сплавам на железной основе в величине модуля упругости 7 х X 10 кгс/мм у алюминия и 20 10 кгс/мм у сталей и чугунов. Кроме того, алюминиевые сплавы мало пригодны для упрочнения поверхностного слоя способами химико-термической обработки и их твердость и износостойкость ниже, чем стали. Некоторые из них,  [c.430]


Однако такая простая зависимость свойств от состава наблюдается не всегда в некоторых случаях в связи с особенностя.ми методов определения свойств приходится констатировать поворот в ходе изменения того или иного свойства. Пример и объяснение этому увидим далее при рассмотрении технических сталей и чугунов, свойства которых представляют наибольший интерес.  [c.126]

Металлическими сплавами называют растворы в жидком состоянии двух или более металлов или металлов с неметаллами, образующие при затвердевании механическую смесь, твердые растворы или химические соединения. плавы распространены в технике гораздо шире, чем чистые металлы, благодаря разнообразию их физико-механических, технологических и эксплуатационных свойств. Например, железо почти не применяется, но зато широко распространены сталь и чугун, являющиеся сплавами железа с углеродом и содержащие также то или иное количество других примесей. Сталь и чугун служат основными материалами для изготовления деталей машин и конструкций. Медь в чистом виде также находит ограниченное применение (главным образом, в электротехнической промышленности) значительно большее распространение получили ее сплавы с цинком (латуни) или с оловом, алюминием, кремнием и другими элементами (бронзы). В чистом виде алюминий применяется мало, гораздо чаще для изготовления деталей машин и конструкций используют его сплавы с кремнием (силумины) или с медью, марганцем, магнием и некоторыми другими элементами (дуралюмины).  [c.45]

Порошковые материалы, используемые для изготовления изделий конструкционного назначения, могут быть разделены на две группы 1) для изготовления изделий в целях замены обычных углеродистых и легированных сталей, чугунов, некоторых цветных металлов и сплавов и 2) материалы со специальными свойствами, получить которые можно только при производстве изделий методами порошковой металлургии.  [c.785]

К пластическим материалам относят конструкционные высокоотпущенные стали с удлинением при разрыве не менее 15%. К хрупким и малопластичным материалам можно отнести чугун, некоторые легированные и инструментальные стали работающие при низких температурах металлокерамические материалы. Пластичность (или хрупкость) материалов не является их постоянным свойством и зависит от физических условий, в которых происходит деформация. Так, например, серый чугун считается вообще не пластичным металлом, однако при всестороннем сжатии становится пластичным. И, наоборот, пластичные стали под действием низких температур могут быть непластичными — хрупкими.  [c.19]


Для других материалов кривая напряжение — деформация имеет, вообще говоря, совсем другой вид. Например, эта кривая для чугуна показана на рис. 229, б. Для чугуна почти нет зоны пластических деформаций при растяжении. По достижении предела упругости имеет место почти незаметная зона текучести, и сразу начинается разрушение образца. Материалы, имеющие диаграмму а (е), подобную диаграмме чугуна, называются хрупкими материалами в отличие от вязких материалов, которые имеют, подобно стали, довольно значительную зону пластических деформаций. Это различие в свойствах вязких и хрупких материалов очень важно знать при практическом применении того или иного материала. Если в какой-то машине при ее работе напряжения в некоторых местах и будут переходить предел упругости, то это не поведет к разрушению машины, сделанной из вязкого материала, машина же, сделанная ив хрупкого материала, разрушится.  [c.290]

Для изготовления котлов, арматуры и вспомогательного котельного оборудования применяют черные металлы, представляющие собой сплав железа с углеродом. В зависимости от содержания углерода и некоторых других элементов, черные металлы имеют различные физические свойства и названия при содержании углерода от 0,3 до 1,7% — сталь, а при содержании его от 1,7—4,5% и более — чугун.  [c.199]

Для уменьшения деформаций применяют также предварительный подогрев свариваемой детали. В этом случае разность между температурой сварочной ванны и температурой всей детали уменьшается, и, следовательно, будут уменьшаться деформации от нагрева в процессе сварки. Данный способ нашел широкое применение при ремонте изделий из чугуна, алюминия, бронзы, высокоуглеродистых и легированных сталей. Изделий подогревают в специальных горнах, печах, индукторах. В некоторых случаях рекомендуется проковывать шов. Проковку проводят как в горячем, так и в холодном состоянии. Проковка металла шва улучшает механические свойства наплавленного металла и в значительной степени уменьшает усадку. Кроме того, для снятия возникших при сварке напряжений и улучшения структуры металла шва и зоны термического влияния применяют термическую обработку.  [c.120]

Сомнительно также, чтобы какое-нибудь значение имело состояние незащищенной поверхности металла перед погружением в почву. Некоторые специалисты считают, что корка иа чугунной отливке обладает защитными свойствами, ио имеющиеся данные противоречивы. При использовании защитных покрытий желательно удалять со стали вторичную окалину, так как ее присутствие может привести к отслаиванию покрытия.  [c.15]

Характеристика различных сортов стали дана в справочнике с достаточной полнотой приведены основные сведения о стали общего назначения, строительной, машиностроительной и инструментальной стали. Особое внимание уделено применяемым в ряде специальных отраслей современного машиностроения стали и сплавам с особыми физическими и химическими свойствами (нержавеющей, износостойкой, для работы при высоких температурах, магнитной, электротехнической и др.). Читатель получит, кроме того, основные сведения о строении и свойствах чугуна, а также о некоторых твердых сплавах и изделиях, изготовляемых методами порошковой металлургии.  [c.12]

Следовательно, так как при pH =4ч-10 коррозия ограничена скоростью диффузии кислорода через слой оксида, небольшие изменения состава стали, термическая и механическая обработка ее не повлекут за собой изменений коррозионных свойств металла, пока диффузионно-барьерный слой остается неизменным. Скорость реакции определяют концентрация кислорода, температура или скорость перемешивания воды. Это важно, так как pH почти всех природных вод находится в пределах 4—10. Значит, любое железо, погруженное в пресную или морскую воду, будь то низко-или высокоуглеродистая сталь, низколегированная сталь, содержащая, например, 1—2 % Ni, Мп, Мо и т. д., ковкое железо, чугун, холоднокатаная малоуглеродистая сталь, будет иметь практически одинаковую скорость коррозии. Этот вывод подтверждается большим количеством лабораторных и промышленных данных для разнообразных типов железа и стали 111]. Некоторые из них приведены в табл. 6.1. Эти данные опровергают распространенное мнение, что ковкое железо, например, является более коррозионностойким, чем сталь.  [c.107]


Состав и некоторые свойства органических теплоносителей приведены в табл. 16.1 и 16.2. Кроме перечисленных здесь теплоносителей применяются также минеральные масла, например, цилиндровое и компрессорное. Недостатком всех органических теплоносителей является то, что они горючи и при температуре выше 400 °С разлагаются. Преимуществом органических теплоносителей перед другими является их относительная инертность к конструкционным материалам. В контакте с органическими теплоносителями устойчивы чугун, железо, углеродистые и нержавеющие стали, медь, алюминий.  [c.255]

Явление переноса отдельных структурных составляющих сплава при трении известно давно. Например, высокие антифрикционные свойства серых чугунов объясняются в некоторой степени тем, что графитовые зерна, имеющиеся в чугуне, выкрашиваются и намазываются на сопряженную поверхность очень тонким слоем и затем частично переносятся на другие структурные составляющие чугуна. Примерно такая же картина наблюдается в свинцовистой бронзе. Свинец, который является одной из структурных составляющих, обладая малой твердостью и большой адгезионной способностью к стали, легко переносится на стальную шейку вала и служит как бы твердой смазкой. Подобным образом работают и другие самосмазывающиеся материалы. В случае переноса меди из бронзы на поверхность стали не происходит схватывания отдельных структурных составляющих сплава, а идет распад твердого раствора бронзы, и уже после распада происходит схватывание.  [c.101]

Чугун — это исходный продукт, получаемый выплавкой из руды, он является сплавом железа с углеродом, причем от содержания последнего зависят свойства чугуна. Кроме углерода в чугуне содержатся некоторые примеси сера, фосфор, кремний и др., попадающие в него из руд или занесенные при плавке. Чугун делится на литейный, ковкий и передельный. Литейный чугун идет на получение отливок, ковкий чугун получается, если отливки подвергнуть особой обработке, при которой часть углерода с поверхности выгорает. Из ковкого чугуна вырабатывают арматуру и многие детали для разных отраслей промышленности. Передельный чугун идет на переработку в сталь.  [c.29]

При испытании на твердость можно определить количественную зависимость между твердостью пластичных металлов, установленной путем вдавливания, и другими механическими свойствами (главным образом пределом прочности). Твердость характеризует предел прочности сталей (кроме аустенитной и мартенситной структур) и многих цветных сплавов. Указанная количественная зависимость обычно не наблюдается у хрупких материалов, которые при испытаниях на растяжение (сжатие, изгиб, кручение) разрушаются без заметной пластической деформации, а при измерении твердости получают пластическую деформацию. Однако в ряде случаев и для этих материалов (например, серых чугунов) можно установить эту зависимость (возрастанию твердости обычно соответствует увеличение предела прочности на сжатие). По значениям твердости определяются некоторые пластические свойства металлов.  [c.24]

Графит обладает низкими механическими свойствами. Он нарушает сплошность металлической основы, располагаясь между ее зернами, ослабляя связь между ними. Поэтому серый чугун плохо сопротивляется растяжению и имеет очень низкие пластичность и вязкость. Чем крупнее и прямолинейнее графитовые включения, тем хуже механические свойства чугуна. Твердость серого чугуна, а также его сопротивление сжатию близки показателям стали, имеющей такую же структуру, как металлическая основа чугуна. Графит оказывает и некоторое положительное влияние на свойства чугуна, в частности, он повышает его износостойкость, действуя аналогично смазке, облегчает обрабатываемость резанием, так как делает стружку ломкой, способствует гашению вибраций изделий, уменьшает усадку при изготовлении отливок.  [c.138]

Противоположным пластичности является свойство хрупкости, т. е. способность материала разрушаться без заметной пластической деформации. Диаграмма растяжения хрупких материалов 3 не имеет площади текучести и зоны упрочнения. У таких материалов величина удлинения при разрыве не превышает 2%, а в ряде случаев измеряется долями процента. К хрупким материалам относятся чугун, высокоуглеродистая сталь. К ним можно отнести также некоторые литейные алюминиевые и магниевые сплавы.  [c.336]

Во второй половине XIX в. значительно расширились представления о задачах магнитных измерений, их практической роли, в области электротехники. Еще в начале 70-х годов проф. А. Г. Столетов указывал на практическое значение исследованной им функции намагничения мягкого железа . В значительно более общей форме этот вопрос ставился в начале XX в. Так, проф. П. Д. Войнаровский писал Задача магнитных измерений — исследование магнитных свойств таких металлов, как железо, сталь, чугун, никель, кобальт... В технике магнитные измерения приобретают особенно важное значение при конструкции динамо-машин, трансформаторов, электродвигателей и других электромагнитных механизмов [236, с. 1]. Практические магнитные единицы, связанные с идеей о магнитном потоке, использовались в лабораториях высших технических учебных заведений и затем на некоторых заводах к тому времени уже появились такие измерительные приборы, как пермеаметры, флюксметры и пр. Еще в конце XIX в. проф. М. А. Шателен (президент Главной палаты мер и весов в 1929—1931 гг.) изучал в Электротехническом институте магнитные свойства сталей и чугунов, а затем, уже в Политехническом институте, исследовал магнитные свойства меди уральских заводов, изучал условия получения потребных сортов электротехнических сталей, что послужило основой для организации производства этих сталей на Урале. Работа М. А. Шателена была продолжена в Главной палате мер и весов, где во вновь организованной магнитной лаборатории было предпринято изучение свойств как постоянных магнитов, так и электротехнических сталей, разрабатывали технические условия их изготовления (И. А. Лебедев, Л. В. Залуцкий).  [c.239]


Чугун вначале является анодом по отношению к низколегированным сталям, и его потенциал мало отличается от потенциала углеродистой стали. По мере коррозии чугуна, особенно в случае графитизацин, графит на поверхности металла сдвигает потенциал в сторону увеличения, и через некоторое время, продолжительность которого зависит от свойств среды, потенциал чугуна, 1 ожет достичь потенциала графита по отношению и к низколегированным, и к углеродистым сталям. Такое поведение чугуна необходимо учитывать, например, при проектировании вентилей. Запирающие поверхности вентиля должны быть точно подогнаны и не иметь питтингов, они всегда должны быть катодами по отношению к корпусу вентиля, имеющему большую поверхность. Поэтому в водных средах с высокой электропроводимостью чаще используют вентили с корпусами из стали, чем из чугуна.  [c.128]

Предварительные замечания. В предыдущих параграфах главы обсуж-дспы многие общие особенности структуры и свойств металлов и сплавов. У отдельных металлов или сплавов имеется ряд специфических свойств, знать которые необходимо инженеру, занимающемуся проблемой надежности, при проектировании тех или иных конструкций, В настоящем параграфе остановимся па некоторых особенностях наиболее важных для техники металлов и сплавов. К их числу относятся железоуглеродистые сплавы (стали, чугуны), алюминиевые, магниевые, сверхлегкие, медные, никелевые сплавы, титан и его сплавы, цирконий и его сплавы, бериллий, тугоплавкие металлы и их жаропрочные сплавы. Некоторые механические и упругие характеристики семи чистых металлов приведены в табл. 4.11.  [c.318]

Бориды тугоплавких металлов устойчивы при нагреве практически до температур их плавления. Некоторые из них, например борид циркония, обладают высокой стойкостью в течение продолжительного времени в расплавах алюминия, меди, чугуна, стали и других металлов. Указанный борид одновременно является хорошим термоэлектродным материалом, даюш,им в паре с графитом или карбидом бора большую устойчивую электродвижу-ш,ую силу, изменение которой от температуры имеет линейную зависимость. Высокие термоэлектрические свойства позволили использовать борид циркония для изготовления высокотемпературных термопар для измерения в агрессивных средах температур свыше 2000° С.  [c.416]

Литые детали составляют основную часть веса машин н конструкций. Поэтому задача повышения механических и эксплуатационных свойств литых конструкционных материалов, а также совершенствование технологии получения отливок не теряют своей актуальности. В настоящей главе кратко изложены результаты выполненных исследований по повышению качества чугунных и стальных отливок. Показано, что комплексные добавки из легирующих элементов — стабилизаторов перлита и графитизатора-силикомишметалла — повышают свойства серого чугуна на 2—3 марки без ухудшения технологических свойств металла. Эксплуатационные характеристики чугунных деталей при этом резко возрастают. Описаны механизм кристаллизации модифицированного чугуна и некоторые оригинальные методики изучения эксплуатационных свойств металла. Даны реко.меидации по использованию редкоземельных лигатур для повышения пластичности и вязкости углеродистой стали.  [c.86]

Корпуса турбин высокого и промежуточного давлений из-за их сложной формы и толстых сечений почти исключительно изготавливают методом литья в песчаные формы, и только внутренние корпуса высокого давления для высокотемпературных турбин изготавливают на станках из специальных поковок аустенитных сталей. Отливки для корпусов турбин (и некоторых паровых камер) должны быть очень высокого, качества и как можно лучше сопротивляться ползучести. Правильный выбор и очень тщательный контроль аа изготовлением стали и последующей отливкой имеет существенное значение. Сам литой металл не только должен обладать требуемыми свойствами высокотемпературной прочности и пластичности, но и удовлетворительно свариваться, так как возможно подсоединение паропроводов. Кроме того, дефекты, получающиеся при отливке, должны быть исправлены сваркой. Металл д 1я отливки может быть получен из скрапа или из жидкого чугуна с применением кислородного дутья. В обоих случаях ркрап или руда должны быть тщательно отобраны по минимальному количеству примесей, причем материалы футеровки печи н топливо не должны вносить в них серу и фосфор. Литье в песчаные формы должно производиться полностью раскисленной сталью, предотвращающей возникновение усадочной пористости металла при затвердевании.  [c.206]

Выбор формы и размеров наконечника, а также нагрузки зависит от целей исследования, структуры, ожидаемых свойств, состояния поверхности и размеров испытуемого образца. Если металл имеет гетерогенную структуру с крупными выделениями отдельных структурных составляющих, различных по свойствам (например, серый чугун, цветные подшипниковые сплавы), то для испытания твердости следует использовать шарик большого диаметра. Если металл обладает сравнительно мелкой и однородной структурой, то малые по объему участки могут быть достаточно характерными для оценки свойств металла в целом и, в частности, его твердости. В таком случае испытания можно проводить вдавливанием тела небольшого размера (например, алмазного конуса или пирамиды) на незначительную глубину при небольшой нагрузке. Подобные испытания рекомендуются для металлов с высокой твердостью, например закаленной или низкоотпущенной стали, поскольку вдавливание стального шарика или алмаза с большой нагрузкой может вызвать деформацию шарика или скалывание алмаза. Вместе с тем значительное снижение нагрузки нежелательно, так как это может привести к резкому уменьшению деформируемого объема, тогда полученные значения твердости не будут характерными для основной массы металла. Поэтому нагрузки и размеры отпечатков на металле не должны быть меньше некоторых пределов.  [c.25]

Защита охладительных систем двигателей внутреннего сгорания (дизели, автомобили) сопряжена со значительными трудностями по следующим причинам системы содержат ряд разнородных в электрохимическом отношении металлов и сплавов (сталь, цинк, латунь, припой, чугун, алюминий) имеют много щелевых зазоров и застойных мест работают при высоких температурах и подвергаются часто эрозионному воздействию и кавитации. Все эти факторы сильно затрудняют подбор ингибиторов. Не представляет труда, как было показано выше, защитить от коррозии сталь или чугун, а также биметаллические системы сталь — медь, однако при наличии в системе алюминия, эксплуатация которого возможна лишь в узком интервале pH, применение щелочных реагентов, хорошо защищающих черные металлы, исключается. Наличие латуни также вносит свои трудности, поскольку медь со многими органическими соединениями, в особенности с аминами, образует легко растворимые комплексные соединения. Особенно трудно защитить от коррозии припой (Pb/Sn — 70/30) так, нитрит натрия, который является хорошим ингибитором для стали, разрушает припой, т. е. самостоятельно применяться не может. Положение осложняется еще и тем, что наличие в системе разнородных в электрохимическом отношении металлов приводит к катодной поляризации одних металлов и анодной поляризации других. Поэтому при определенном общем потенциале, который устанавливается в "системе или на отдельных электродах, некоторые ингибиторы, которые обычно в присутствии одного металла не восстанавливаются, могут восстанавливаться, теряя свои защитные свойства. Этот процесс, например для хроматов, усиливается при наличии в воде органических соединений (уплотнителей органического происхож-  [c.269]


В последнее время достигнуты большие успехи в использовании модификаторов для улучшения качества сталей и сплавов [1]. Модифицирование нашло широкое применение в производстве литейных сплавов. Очень большое число исследований посвящено модифицированию чугунов комплексными добавками. Уже имеется значительное количество сталей гостированных марок с так называемыми технологическими добавками, часто достигающими довольно больших концентраций (до 0,3%)- Некоторые исследователи показали, что большие концентрации добавок оказывают отрицательное влияние на свойства стали. При разработке сталей и сплавов новых марок следует проводить систематические исследования с целью накопления достоверных данных для установления оптимальных концентраций технологических добавок [2].  [c.7]

Для обеспечения высоких и стандартных качеств автомобильных деталей и одинаковых условий их обрабатываемости стали, чугуны и цветные металлы должны обладать постоянными механическими и технологическими свойствами, не меняющимися существенно в зависимости от плавки и партии. Поэтому при изготовлении ответственных деталей автомобилей часто применяют углеродистые стали, которых колебание количественного содержания углерода сужено до 0,05% против 0,10% в гостированных сталях. По этой же причине находят применение чугун и цветные металлы заводских марок с несколько измененным процентным содержанием отдельных компонентов по отношению к стандартным маркам. В некоторых случаях для обеспечения высоких механических или технологических качеств, деталей в автомобилестроении находят применение марки легированных сталей и других металлов и сплавов, не предусмотренных ГОСТом.  [c.4]

Белый (или предельный) чугун имеет в изломе белый оттенак и мелкозернистую структуру. Он отличается высокой твердостьк и хрупкостью, что затрудняет его обработку и ограничивает область применения. Белый чугун перерабатывают (переделывают) в сталь и ковкий чугун. Ковкий чугун получают в результате томления (длительного нагрева и выдержки при высокой температуре) белого чугуна, вследствие чего изменяется его структура и повышается пластичность. Название ковкий чугун является условным ковать его нельзя. По механическим свойствам он занимает промежуточное положение между серым чугуном и стальным литьем и допускает некоторое изменение формы изделия в холодном состоянии.  [c.75]

При затвердевании чугуна белым 1—2% Мп не оказывают заметного влияния на первичную структуру. Как показано выше, в белом чугуне марганец концентрируется в карбидной фазе. Карбид марганца МпзС изоморфен с цементитом Ре С и образует с ним непрерывный ряд твердых растноров. Обычно полагают, что и в высокомарганцевых чугунах карбидная фаза представлена как (Ре, Мп)зС, хотя в работе [83] на основании морфологического анализа колоний карбидо-аустенитной эвтектики высказано предположение о возможности кристаллизации в чугунах, содержащих более 20% Мп, тригональ-ного карбида (Мп, Ре)7Сз. Однако и при меньших содержаниях марганца в первичной структуре отливок из белого чугуна наблюдаются некоторые особенности. Рентгенографические исследования цементита, выделенного из содержащих марганец сталей или чугунов [54, 84], выявили, например, сверхструктурные линии. Это позволяет сделать предположение, что атомы марганца вследствие большего сродства к углероду в первую очередь замещают в цементите те атомы железа, которые находятся на ближайших расстояниях от атомов углерода. Закономерное расположение атомов марганца, связанное с усилением гомеополярных связей в решетке марганцевого цементита, увеличивает анизотропию скорости роста и свойств его кристаллов. С этим следует  [c.120]

Азотированию, или насыщению поверхностного слоя азотом подвергают углеродистые и легированные стали со средним содер жанием углерода, а также чугуны. При азотировании твердость Износостойкость и выносливость поверхностного слоя изделий новы шаются увеличивается также сопротивление стали коррозии и кор розионной усталости. Изменение этих свойств вызвано образованием на поверхности азотированных изделий дисперсных нитридов — химических соединений азота с некоторыми элементами (например, алюминием, хромом, молибденом, ванадием, вольфрамом и др.) и карбонитридов. Поэтому наибольшее распространение в качестве  [c.151]

Характеристики шлифовальных лент выбираются в зависимости от формы и размеров детали, химического состава и физикомеханических свойств материала, а также исходного состояния обрабатываемой поверхности. В табл. 14 приведены рекомендации по режимам резания и смазочно-охлаждаюп1.им жидкостям при обработке некоторых металлических материалов шлифовальными лентами. Плоские и внутренние поверхности деталей и чугуна, бронзы, стали обрабатываются при скорости движения шлифовальной ленты 20—25 м/с, а цилиндрические — при скорости 30 м/с. Титан рекомендуется шлифовать при скорости шлифования 10—25 м/с, а твердые сплавы — при 15—18 м/с. Шлифовать при скоростях более 30 м/с, как правило, не рекомендуется,, так как при этом возрастают вибрации станка и ленты и качество обработки заметно снижается. Поэтому скорость ленты следует выбирать в зависимости от жесткости используемого станка.  [c.122]

Изменение амплитуды напряжений при жестком нагружении, как и изменение амплитуды деформаций при мягком нагружении, в процессе циклических испытаний определяется свойствами материала. Для одних материалов (алюминиевые сплавы, титан и низкопрочные а-сплавы на его основе, некоторые конструкционные стали) ширина петли гистерезиса при мягком деформировании по мере нара--стания количества циклов уменьшается, а амплитуда напряжений при жестком нагружении увеличивается. Для этой группы материалов характерно повышение предела пропорциональности с увеличением количества циклов нагружения, в связи с чем такие материалы относят к группе циклически упрочняющихся. Для других материалов (например, теплостойкие стали, чугуны, высокопрочные титановые а и (а+ 0)-сплавы) наблюдается обратная картина при мягком нагружении ширина петли гистерезиса увеличивается, а при жестком нагружении амплитуда напряжения снижается. Сопротивление деформированию для этой группы материа-пов с увеличением количества циклов уменьшается, а вся группа материалов относится к типу циклически разупрочняющихся. И, наконец, ряд материалов (аустенитные стали, конструкционные стали средней прочности, некоторые титановые сплавы) не изменяют сопротивления деформированию при цикпическом нагружении, форма диаграмм деформирования остается практически неизменной, а сами материалы относятся к циклически стабильным. На рис. 47 приведен характер изменения диаграмм при жестком и мягком нагружении описанных групп материалов.  [c.87]

Известно, что углерод существенно влияет на коррозионную стойкость сталей. С увеличением содержания углерода коррозионная стойкость сталей уменьшается, уменьшается она и при переходе к з алочным структурам. Так, например, скорость коррозии чистого железа в 1 н. рас1воре соляной кислоты приблизительно в сто раз меньше, чем серого чугуна и в десять раз меньше, чем Ст. 10. В нейтральных средах влияние содержания углерода на скорость коррозии уменьшается. Примесь марганца практически не влияет на коррозионную стойкость стали. Добавка кремния в количестве свыше 1 % несколько снижает коррозионную стойкость стали, очень большие добавки кремния (от 15 % и более) повышают коррозионную стойкость углеродистых сталей. Примеси серы в некоторой степени снижают коррозионную стойкость, фосфор, существенно влияющий на механические свойства сталей, почти не сказывается при этом на их коррозионных характеристиках.  [c.38]

Чугунные элементы обладают такими положительными свойствами, как дешевизна, легкость отливки, хорошая акку.муляция тепла на поверхностях трения, меньшее расширение при нагреве и, следовательно, меньшие искажения геометрических размеров, высокая температура. плавления, излучательная способность и износостойкость самого чугуна и меньшее изнашивание фрикционного материала. В некоторых отраслях машиностроения применение чугунных элементов было ограничено опасностью разрыва его центробежными силами. Однако в связи с успехами, достигнутыми в металлургии чугуна в отношении повышения его механических свойств, а также в связи с развитием средств дефектоскопии чугун в настоящее время приобретает все большее распространение, постепенно вытесняя сталь. Чем выше теплоемкость металлического элемента, тем лучше тепло аккумулируется в нем и быстрее рассеивается в окружающей среде. Поэтому было бы желательно делать металлические элементы из сплавов меди, алюминия и магния, обладающих большей теплоемкостью. Но эти сплавы по своей механической прочности и низкой износоустойчивости не могут служить металлическим элементом. Поэтому в последнее время  [c.571]


В последние годы заметно увеличилось производство ряда комплексных сплавов, изготовленных на основе ферросилиция и содержащих дополнительно барий, марганец, щелочноземельные металлы (ЩЗМ), РЗМ и другие элементы. Это связано с ростом потребности в сталях с особыми свойствами и в отлпвках из высокопрочного чугуна, необхо-.димостью устранить отбел чугуна. Применение таких ферросплавов улучшает качество металла и обеспечивает повышение долговечности изделий из него и снижение расхода металла при производстве изделий. В табл. 25 приведен состав некоторых специальных сплавов, производимых в СССР и зарубежом. Производство таких сплавов осуществляется пли присадкой в шихту при выплавке ферросилиция, концентратов, или передельных сплавов, содержащих необходимые элементы, или введением металлических добавок, содержащих эти элементы, в ковш, в изложницу или в струю сплава при его разливке. Часто используют и комбинацию этих методов, когда часть дополнительных элементов вводится в шихту при выплавке ферросилиция, а остальные растворяют тем или иным способом в жидком сплаве. Реже используют методы сплавления твердых элементов, металлотермии п др. В каждом конкретном случае должно быть найдено оптимальное решение, обеспечивающее высокую эффективность производства, использование недефицптного сырья п охрану природной среды. Следует отметить, что большое количество производимых сплавов и еще большее число патентов свидетельствуют не только об интересе к этой проблеме и ее важной роли в промышленности, но также и об отсутствии научного выбора оптимального химического состава сплавов. Серьезной является также проблема обеспечения нормальных санитарно-гигиенических условий при производстве этих сплавов, особенно содержащих такие элементы как стронций, барий и т. п. [73].  [c.95]

В табл. 14 в качестве примера даны некоторые режимы термической обработки коленчатых и распределительных валов автомобилей, подтверждающие высказанное выше положение. В связи с изложенным приведенные в табл. 15 примеры носят обобщенный рекомендательный характер. В таблице сосредоточены примеры использования индукционного нагрева для поверхностной закалки деталей в целях увеличения их износостойкости. Это наиболее широкая и часто встречающаяся на практике область применения. Анализ приведенных примеров показывает возможность использования пЬверхностной закалки с нагревом ТВЧ и охлаждением в разных средах для широкого класса конструкционных материалов, что обеспечивает заданный уровень свойств прочности. В большинстве случаев для снятия напряжений и достижения требуемого уровня пластичности используют самоотпуск. Иногда технология включает ускоренные режимы электроотпуска (оси коромысел клапанов двигателей, мелкие валы с большим числом концентраторов напряжений на плицах н отверстиях) или низкотемпературный отпуск 150—250° С, проводимый в расположенных рядом печах. Обычно это шахтные или камерные печи в отдельных случаях при обработке длинномерных деталей — специальные проходные конвейерные печи. Отпуск особосложных коленчатых и распределительных валов, торсионов, изготовляемых из легированных сталей или специальных легированных чугунов, выполняют в масляных ваннах при 160—180° С.  [c.554]

Помимо испытания на разрыв, чугун подвергают испытанию на изгиб. Для этого круглый цилиндрический или реже призматический образец кладут на две опоры и посредине между ними прикладывают сосредоточенную нагрузку, которую постепенно увеличивают до тех пор, пока образец не сломается. Обычно прочность на изгиб машиностроительного чугуна в 1,5—2 раза выше предела прочности при растяжении и равняется 35— 55 кг1мм . Наибольшая величина прогиба при этом испытании называется стрелой прогиба. Она характеризует до некоторой степени пластические свойства чугуна, подобно удлинению и поперечному сужению стали при разрыве.  [c.161]

Высокопрочные чугуны получают введением в расплавленный чугун добавок из магния или магниевых лигатур. Это приводит к изменению формы графитовых включений в чугуне вместо пластинчатых они приобретают шаровую форму с образованием мелких сферических зерен. Благодаря этому снижается концентрация напряжений около зерен и металл приобретает повышенные механические свойства, иногда приближающиеся к механическим характеристикам сталей. Удлинение, ударная вязкость и усталостная прочность некоторых высокопрочных чугунов таковы, что в ряде случаев этим материалом можно заменить сталь. Для отливок наиболее часто применяют высокопрочные чугуны ВЧ45-5, ВЧ42-12 и другие (в обозначении первое число показывает предел прочности при растяжений, второе число — удлинение при  [c.37]

ЭИ366) содержат повышенное коли- 1. чество углерода (до 1,75%) и кремния 15 (до 1,6%). Кремний вводят как графи-тизирующий элемент. Часть углерода в этих сталях после графитизирую-щего отжига (напоминающего отжиг для получения ковкого чугуна) выделяется в виде графита. После термической обработки структура стали состоит из зернистого перлита с некоторым количеством мелких округлых включений графита. При неабразивном износе графит играет роль смазки, предотвращая сухое трение и схватывание. Кроме того, эти стали обладают антивибрационными свойствами.  [c.231]

Поэтому дилатометрический анализ применяют для установления критических точек превращений в стали, для изучения процессов закалки и отпуска стали, а также для исследования графитизации чугуна и процессов старения некоторых сплавов. Однако основное применение этот метод получил для изучения превращений в стали, так как многие из них сопровождаются более резким изменением объема, чем других свойств. Так, например, переход а-железа в ужелезо или перлита в аустенит сопровождается заметным сокращением объема (и длины образца), поскольку -железо и твердый раствор углерода на его основе (аустенит) обладают наименьшим удельным объемом. Обратное течение этих превращений при охлаждении и особенно переход аустенита в мартенсит сопровождаются значительным увеличением объема образца (его удлинением), так как мартенсит обладает наибольшим удельным объемом.  [c.188]


Смотреть страницы где упоминается термин Свойства некоторых сталей и чугунов при : [c.75]    [c.2]    [c.55]    [c.72]    [c.37]    [c.458]    [c.78]    [c.44]   
Смотреть главы в:

Холодильная техника, свойства веществ  -> Свойства некоторых сталей и чугунов при



ПОИСК



Сталь Свойства

Сталь Чугун

Чугуны Свойства



© 2025 Mash-xxl.info Реклама на сайте