Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Исследование задач статики

ИССЛЕДОВАНИЕ ЗАДАЧ СТАТИКИ  [c.351]

Исследование задач статики  [c.351]

ИССЛЕДОВАНИЕ ЗАДАЧ СТАТИКИ 359  [c.359]

Основной задачей статики является исследование условий равновесия внешних сил, приложенных к абсолютно твёрдому телу.  [c.85]

Много теоретически интересных и практически важных задач статики и динамики стержней возникает при исследовании взаимодействия стержней с потоком воздуха или жидкости. Учет сил взаимодействия стержня с внешним потоком приводит к более сложным задачам по сравнению с традиционными. Основная трудность при решении этих задач заключается прежде всего в том, что очень сложно получить информацию о силах, действуюш,их на находящийся в потоке стержень. Это вызвано тем, что стержни, например провода линии электропередачи, тросы, находящиеся в потоке (рис. В.9), могут сильно отклоняться от первоначальной (показанной пунктиром) равновесной формы, а от формы осевой линии стержня — угла фа между касательной к осевой линии стержня (вектором ei) и вектором скорости потока (vq) —зависят возникающие аэродинамические силы qa.  [c.8]


Полученное из принципа минимума потенциальной энергии условие Ji = U—2А = т п является очень эффективным для приближенных решений задач статики стержней. Дифференциальные уравнения, получающиеся при исследовании вариационных задач (например, уравнение равновесия стержня), интегрируются в конечном виде лишь в частных случаях. Поэтому возникает необходимость в разработке методов приближенного решения вариационных задач с использованием исходных функционалов [например, (4.217)], не переходя к дифференциальным уравнениям. Такие методы решения вариационных задач принято называть прямыми методами.  [c.180]

В результате решения задач статики, т. е. исследования равновесия твердого тела, определяются неизвестные силы (активные и реакции связей), обеспечивающие равновесие тела, геометрические параметры механической системы, обеспечивающие ее равновесие, или положения равновесия механической системы. При этом чис-  [c.247]

Конкретно настоящая глава содержит обзор современного состояния вопросов, связанных с основными концепциями строительной механики рассматриваемых конструкций. Приведены задачи статики, динамики и устойчивости. Отмечены недостаточно разработанные, и нуждающиеся в дальнейших исследованиях вопросы. Рассмотрены примеры расчета конкретных конструкций.  [c.109]

Преимущество теории эффективных модулей и ее современных аналогов состоит в том, что дискретный характер истинной структуры композита описывается в рамках однородного континуума. Таким образом, эта приближенная теория позволяет работать лишь с одной системой уравнений, описывающих поведение композиционной среды как единого целого, вместо того чтобы иметь дело с несколькими системами полевых уравнений (по системе для каждой неоднородности элемента). Для широкого класса условий нагружения теория эффективных модулей оказывается вполне удовлетворительной. Однако она становится малопригодной в таких задачах статики, в которых главное внимание обращается на вычисление локальных значений полевых переменных, как, например, при исследовании разрыва  [c.355]

XXX. Я начну со случая, в котором несколько сил приложено к одной точке, и покажу, что точка не будет находиться в равновесии, если только сумма усилий не будет наименьшей. Именно отсюда вытекает основной принцип разложения сил, являющийся последним выводом всей Статики и других наук, зависящих от нее. Я, следовательно, покажу, что этот фундаментальный принцип есть только весьма естественное следствие универсального принципа равновесия Мопертюи. С этой целью я предположу силы, действующие на точку постоянными, чтобы не углубляться в исследование задач с переменными силами.  [c.86]


Отсутствие аналитических решений для нелинейных задач статики и динамики конструкций АЭУ, описываемых уравнениями (3.40)-(3.50), обусловили широкое использование численных методов, ориентированных на применение современных ЭВМ, и главным образом метода конечных элементов (МКЭ). Многочисленные задачи, возникающие в процессе проектирования АЭС, начиная от физики реакторов, гидродинамики и теплообмена и до разнообразных задач динамики конструкций, исследования их прочности и разрушения с учетом взаимодействия с физическими полями различной природы, решаются в настоящее время этим методом [45]. Однако наибольшее применение МКЭ получил в уточненных расчетах напряженных состояний, возникающих в элементах конструкции АЭУ при эксплуатационных, аварийных и сейсмических воздействиях.  [c.104]

Рассмотрим получение вариационно-матричным способом канонической системы дифференциальных уравнений для решения задач устойчивости н колебаний. При получении разрешающих уравнений будем считать, что в исходном невозмущенном состоянии оболочка напряжена, но не деформирована. Исходное напряженное состояние определяется решением- задачи статики в линейной постановке. При составлении уравнений движения в окрестности исходного состояния будем учитывать начальное напряженное состояние. В деформационных соотношениях кроме линейных составляющих будем учитывать нелинейные слагаемые, связанные с дополнительными углами поворота нормалей. При решении задач рассмотрим только осесимметричное начальное напряженное состояние. Будем считать, что действующие на конструкцию внешние нагрузки при движении системы не изменяются ни по величине, ни по направлению. В целом систему, включая внешние нагрузки и условия связи, будем считать консервативной. Исследование движения системы относительно начального состояния проведем без учета демпфирующих свойств.  [c.156]

В четвертой главе на основе разработанных уравнений даны решения задач цилиндрического изгиба изотропных слоистых длинных пластин и панелей и решения задач об их выпучивании по цилиндрической поверхности. Кроме того, эти задачи рассмотрены еще и на основе уравнений других вариантов неклассических прикладных теорий, приведенных в гл. 3. Выполнен параметрический анализ полученных решений, что позволило уточнить границы их пригодности, оценить влияние поперечного сдвига и обжатия нормали на расчетные характеристики напряженно-деформированного состояния и критические параметры устойчивости. Дифференциальные уравнения задач статики рассматриваемых здесь элементов конструкций допускают аналитическое представление решения, что использовано при детальном исследовании и сравнительном анализе структур решений, полученных с привлечением различных геометрических моделей деформирования. На примере задачи цилиндрического изгиба длинной пластинки показано, что в моделях повышенного порядка появляются решения, описывающие ярко выраженные краевые эффекты напряженного состояния. С наличием последних связаны существенные трудности, возникающие при численном интегрировании краевых задач уточненной теории слоистых оболочек и пластин — их характер, формы проявления и пути преодоления также обсуждаются в этой главе.  [c.13]

Среди практически важных задач расчета таких оболочек видное место занимает класс осесимметричных задач статики. Укажем, например, на задачу изгиба замкнутой в окружном направлении оболочки вращения — если условия нагружения и опирания оболочки, структура армирования ее слоев не зависят от угловой координаты, то такими же будут и все характеристики ее напряженно-де-формированного состояния. В этой и аналогичных задачах исследование процесса деформирования требует обращения не к общей системе уравнений с частными производными (3.5.1)—(3.5.7), (3.6.3) — (3.6.5), а к ее частной форме — системе обыкновенных дифференциальных уравнений.  [c.76]


Первые дошедшие до наших дней рукописи и научные сообщения в области механики принадлежат античным ученым Греции и Египта. Древнейшие папирусы и книги, в которых сохранились исследования некоторых простейших задач механики, относятся главным образом к различным задачам статики, т. е. учению о равновесии. В первую очередь здесь нужно назвать сочинения выдающегося философа древней Греции Аристотеля (384—322 дон. э.), который ввел в научный обиход название механика для широкой области человеческого знания, в которой изучаются простейшие движения материальных тел, наблюдаемые в природе и создаваемые человеком при его деятельности.  [c.53]

Одновременно с развитием аналитических методов в XIX столетии начали усовершенствоваться и геометрические методы исследования задач механики. Так, вышедшая в 1804 г. книга французского механика и геометра П у а н с о (1777—1859) Элементы статики изложена наглядным геометрическим методом.  [c.69]

Еще Аристотель использовал метод возможных перемещений при решении задачи о равновесии рычага. Галилей применял его для исследования равновесия простейших машин. Однако окончательное завершение метод получил только в 1717 г. в работах И. Бернулли и Лагранжа. Швейцарский ученый И. Бернулли (1667—1748) первым показал общность принципа возможных перемещений и его преимущества при решении задач статики. Лагранж дал первое доказательство этого принципа. После Лагранжа появилось еще несколько других доказательств. Наиболее известные из них принадлежат Амперу, К. Нейману и Ж. Фурье (1768—1830).  [c.152]

В настоящее время наиболее развита теория контактных взаимодействий упругих тел. Широко представлены контактные задачи статики для классических [81, 216] и неклассических областей [79, 173, 183], динамические контактные задачи [59, 76, 190], задачи контактного взаимодействия тонкостенных элементов [8, 92, 165, 173], контактные задачи с учетом износа [81, 89, 196]. В меньшей степени отражены в монографиях контактные задачи теории вязкоупругости [81, 115, 182]. И совсем недавно начаты исследования контактных задач для тел из стареющих материалов [8, 38, 57].  [c.7]

В механике композиционных материалов (КМ) получили развитие два взаимосвязанных и дополняющих друг друга направления исследований. Первое из них базируется на строгом учете структуры материала, второе — на использовании интегральных диаграмм деформирования, которые могут быть получены экспериментально или расчетным путем. Точные решения задач механики в постановке, соответствующей первому направлению, кроме рассмотренных специфических вопросов [1-4], подтвердили применимость методов второго направления к весьма широкому классу композитов, использующихся для изготовления оболочечных конструкций, в связи с этим при разработке методов решения задач статики и динамики оболочек из КМ структурные особенности последних учитываются только при расчете эффективных характеристик анизотропной сплошной среды, имеющей такие же диаграммы деформирования и прочностные характеристики, что и исходный КМ. Построив в таком приближении уравнения состояния КМ, а также используя уравнения движения и соотношения между перемещениями и деформациями теории упругости анизотропного тела, можно получить решение соответствующих задач, хотя это сопряжено со значительными трудностями.  [c.105]

Первые, дошедшие до наших дней рукописи и научные сообщения в области механики принадлежат античным ученым Греции и Египта. Древнейшие папирусы и книги, в которых сохранились исследования некоторых простейших задач механики, относятся главным образом к различным задачам статики, т. е. учению о равновесии. В первую очередь здесь нужно назвать сочинения выдающегося философа древней Греции Аристотеля (384—322 гг. до н. э.), который ввел в научный обиход  [c.19]

Для системы сил, сходящихся в одной точке, обе эти задачи уже разрешены. По существу это задачи статики одной материальной точки. Рассмотрим далее задачи приведения и равновесия сил, требующие применения более сложных методов исследования и введения новых понятий.  [c.307]

Решение вспомогательного уравнения. Для исследования единственности решения задач статики необходимо построить все действительные решения уравнения Е и, г/) = О из класса Е . Это уравнение в силу (1.6) эквивалентно системе уравнений  [c.87]

Перейдем теперь к исследованию поставленных граничных задач и подробно рассмотрим типичные при этом задачи статики и колебания будут рассмотрены отдельно.  [c.424]

Постановки задач статики и колебания, как видим, формально не различаются исследование их, однако, требует отдельного рассмотрения.  [c.451]

Столь подробное изучение движения материальной точки вызвано двумя обстоятельствами. Во-первых, построенная теория имеет большое самостоятельное значение, как теория широко ра1Спростра-ненного на практике поступательного движения реальных тел. Во-вторых, методически она создает достаточно удобный каркас для построения статики и динамики системы материальных точек, а также доставляет ряд стандартов исследования задач механики.  [c.11]

Направление силы Р< ) показано на рис. 6.27. Сосредоточенные и распределенные силы, вызванные потоком (на криволинейных участках трубопровода возникают распределенные силы, равные по модулю тгШо из, где из — кривизна осевой линии стержня), нагружают стержень. Вызванное потоком жидкости начальное напряженное состояние стержня существенно влияет на его частотные характеристики, что при исследовании задач динамики следует обязательно учитывать. Полученные уравнения равновесия (6.112) и (6.114) справедливы как для случая, когда форма осевой линии стержня при нагружении внешними силами практически остается без изменения, так и для случая, когда форма равновесия при приложении внещних сил существенно отличается от исходной (например, для стержней с малой жесткостью). В первом случае вектор бь входящий в уравнение (6.114), есть известная функция координаты S с известными проекциями в декартовых осях во втором случае вектор С] неизвестен и для определения Q и М уравнений (6.112), (6.114) недостаточно для решения задач статики необходимо рассматривать деформации стержня.  [c.264]


Эта глава посвящена пластинам из композиционных материа лов, особое внимание в ней уделено 1) построению теории сло-истИгх сред и ее приложению к различным слоистым структурам, встречающимся на практике 2) разработке линейной теории топких слоистых пластин и ее приложению к задачам статики, динамики, устойчивости и термоупругости 3) формулировке уточненных вариантов этой теории, позволяющих описать большие прогибы пластин, учесть податливость материала при сдвиге по толщине и рассмотреть трехслойные пластины. Предстоит еще многое сделать (особенно в экспериментальном плане) для того, чтобы установить, какой подход к построению уточненной теории, учитывающей трансверсальные деформации, является наиболее эффективным для решения инженерных задач. Необходимы также дальнейшие исследования проблем панельного флаттера, термоупругости и связанных с ними вопросов устойчивости.  [c.201]

Содержание статьи несложно, посвящена она исследованию построения планов скоростей и ускорений для нескольких случаев. (Интересно, что в одном американском техническом журнале 50-х годов была помещена статья, в которой с торжеством приводится решение все тех же тривиальных случаев, в частности решенных Ассуром в 1907 г.,— по-видимому, сказывается отсутствие достаточно полной информации.) В самом начале статьи Ассур высказывает мысль, которую он впоследствии неоднократно повторит,— о существовании некоторого подобия между задачами кинематики и задачами статики. На этом основании Ассур и будет искать общие решения для кинематических задач. Здесь же он замечает, что построения планов, или картин скоростей и ускорений играют в кинематике стержневых механизмов роль, аналогичную той, которую планы Кремоны занимают в статике стержневых систем.  [c.35]

Мы видели уже, что Ассур неоднократно указывает на родство задач кинематики и кинетостатики и на принципиальную применимость теории кинематических цепей, разработанную им, для решения задач статики ферм. Подобную же мысль проводит в своем исследовании и И. М. Рабинович. Однако характерным отличием работы последнего является ее практическая направленность — это то, что у Ассура отсутствует.  [c.189]

Язык структурного описания механизмов (СТРОМ) предназначается для описания плоских и пространственных шарнирнорычажных механизмов с жесткими звеньями, для задания исходных данных при решении задач структурного синтеза, кинематического и динамического анализа, а также для задачи статики. Этот язык является входным для программной системы исследования на ЭЦВМ рассматриваемых механизмов. При разбротке языка СТРОМ учтены особенности языка системы IMP и возможности средств вычислительной техники. Он позволяет исследователю описывать механизм и тип анализа, используя ключевые слова [1-3].  [c.149]

В книге излагаются основы новой графической статики и кинематики плоских и пространственных стержневых систем и механизмов. Рассматриваются также задачи динамики твердого тела, элементы прикладного графического анализа и т. п. В качестве математического аппарата используются весовая линия , векторы и их производные, бивекторы и тервекторы. Результаты графических операций с использованием математического анализа в одинаковой степени переносятся как в статику, так и в кинематику. Этим достигается общность и единство исследования задач векторной геометрии и механики.  [c.2]

Для толстостенных трехслойных оболочек с податливым слоем заполнителя при исследовании локальных краевых эффектов в окрестности приложения сосредоточенных сил и закреплений, а также при коротковолновых формах потери устойчивости и колебаний расчет проводят с учетом деформаций поперечного сдвига и сжатия в слое заполнителя. Наиболее простая модель, позволяющ,ая в первом приближении учитывать указанные деформации, может быть получена с использованием предположения о линейном законе распределения всех компонент вектора перемещений по толщине заполнителя [11]. Рассмотрим основные соотношения и вариационные формулировки решения задач статики, устойчивости и колебаний, соответствующие данной модели.  [c.218]

Предлагаемая вниманию читателей книга освещает различные методы решения задач механики деформируемого твердого тела. Для иллюстрации возможностей методов выбраны задачи статики, динамики и устойчивости стержневых и пластинчатых систем, т.е. задачи сопротивления материалов, строительной механики и теории упругости, имеющих важное практическое и методологическое значения. Каждая задача механики деформируемого твердого тела содержит в себе три стороны 1. Статическая - рассматривает равновесие тела или конструкпди 2. Геометрическая - рассматривает связь между перемещениями и деформациями точек тела 3. Физическая -описывает связь между деформациями и напряжениями. Объединение этих сторон позволяет составить дифференциальное уравнение задачи. Далее нужно применить методы математики, которые разделяются на аналитические и численные. Большим преимуществом аналитических методов является то, что мы имеем точный и достоверный результат решения задачи. Применение численных методов приводит к получению просто результата и нужно еще доказывать его достоверность и оценивать величину погрепшости. К сожалению, до настоящего времени получено весьма мало точных аналитических решений задач механики деформируемого твердого тела и других наук. Поэтому приходится применять численные методы. Наличие весьма мощной компьютерной техники и развитого программного обеспечения практически обеспечивает решение любой задачи любой науки. В этой связи большую популярность и распространение приобрел универсальный численный метод конечных элементов (МКЭ). Применительно к стержневым системам алгоритм МКЭ в форме метода перемещений представлен во 2, 3 и 4 главах книги. Больпшми возможностями обладает также универсальный численный метод конечных разностей (МКР), который начал развиваться раньше МКЭ. Оба этих метода по праву занимают ведущие места в арсенале исследований. Большой опыт их применения выявил как преимущества, так и очевидные недостатки. Например, МКР обладает недостаточной устойчивостью численных операций, что сказывается на точности результатов при некоторых краевых условиях. МКЭ хуже, чем хотелось бы, решает задачи на определение спектров частот собственных колебаний и критических сил потери устойчивости. Эти и другие недостатки различных методов способствовали созданию и бурному развитию принццпиально нового метода решения дифференциальных уравнений задач механики и других наук. Метод получил название метод граничных элементов (МГЭ). В отличии от МКР, где используется конечно-разностная аппроксимация дифференциальных операторов, в МГЭ основой являются интегральное уравнение задачи и его фундаментальные решения. В отличие от МКЭ, где вся область объекта разбивается на конечные элементы, в МГЭ дискретизации подлежит лишь граница объекта. На границе объекта из системы линейных алгебраических уравнений определяются необходимые параметры, а состояние во  [c.6]


Изложению исследований по существованию и едииствеиности решений краевых задач статики и установившихся колебаний упругого тела посвящен труд Купрадзе В. Д., Тегелия Т. Г., Башелейшвили М. О., Бурчу-ладзе Т. В,, Трехмерные задачи математической теории упругости , Изд-во Тбилисского ун-та, Тбилиси 1968,  [c.914]

Таким образом, в данной работе получены уточненные уравнения эластодинамнки оболочек. Выполненные исследования свидетельствуют об эффективности построенных соотношений для решения неклассических задач статики, динамики и устойчивости оболочек. Полученные результаты для оболочек с реаль-  [c.6]

В течение XVII в,, в эпоху формирования классической механики, статические задачи, побуждавшие в той или иной мере заниматься проблемой устойчивости, были оттеснены на задний план задачами динамики. В новых задачах динамики вопрос об устойчивости, принципиально более сложный и гораздо менее наглядный, чем в задачах статики, поначалу вовсе не ставился. В результате в течение примерно столетия в проблему устойчивости не было внесено ничего существенно нового. Обновление приходит вместе с развитием в XVIII в. аналитических методов механики. Новыми существенными успехами учение об устойчивости обязано Л. Эйлеру Стимулом было, как и прежде, исследование проблемы плавания. В 1749 г. в Петербурге была издана двухтомная Корабельная наука (на латинском языке) Леонарда Эй- лера Этот труд был закончен в основном еще в 1740 г. Его третья глава — Об устойчивости, с которой тела, погруженные в воду, упорствуют в положении равновесия ,— начинается с утверждения, что устойчивость, с которой погруженное в воду тело упорствует в положении равновесия, должна определяться величиной момента восстанавливающей силы, когда тело будет наклонено из положения равновесия на данный бесконечно малый угол. Здесь дается обоснованная предыдупщм изложением мера устойчивости, четко введена устойчивость равновесия по отношению к бесконечно малым возмущениям, а в дальнейшем изложении устойчивость равновесия исследуется с помощью анализа малых колебаний плавающего тела около положения равновесия. Дифференциальное уравнение второго порядка, описывающее эти колебания, составляется в соответствии с введенной мерой устойчивости, путем отбрасывания малых величин порядка выше первого и поэтому оказывается линейным уравнением с постоянными коэффициентами (без слагаемого с первой производной, так как трение не учитывается, и без правой части). Это позволяет сопоставить его с хорошо изученным к тому времени уравнением малых колебаний математического маятника при отсутствии сопротивления среды. Качественная сторона дела тоже учитывается введенной Эйлером мерой момент восстанавливающей силы зависит от оси, относительно которой он берется, и для одних осей он может быть положителен (устойчивость равновесия), для других отрицателен (неустойчивость), для  [c.118]

При решении ряда технических вопросов прочности приходится иметь дело с задачами динамики. Например, при расчете многих машинных частей, участ-вуюпцих в движении, приходится принимать во внимание силы инерции. И напряжения, вызываемые этими силами, иногда во много раз больше тех, которые получаются от статически действующих нагрузок. Такого рода условия мы имеем при расчете быстровращающихся барабанов и дисков паровых турбин, шатунов быстроходных машин и паровозных спарников, маховых колес и т. д. Решение таких задач может быть выполнено без особых затруднений, так как здесь деформации не играют роли мы можем при подсчете сил инерции рассматривать тела как идеально твердые и потом, присоединив найденные таким путем силы инерции к статическим нагрузкам, привести задачу динамики к задаче статики. Эти задачи достаточно полно были рассмотрены в курсе сопротивления материалов, и мы на них здесь останавливаться не будем, а перейдем к другой группе вопросов динамики — к исследованию колебаний упругих систем под действием переменных сил. Мы знаем, что при некоторых условиях амплитуда этих колебаний имеет тенденцию возрастать и может достигнуть таких пределов, когда соответствующие ей напряжения становятся опасными с точки зрения прочности материалов. Выяснению таких условий, главным образом по отношению к колебаниям призматических стержней, и будет посвящена настоящая глава. Как частные случаи рассмотрим деформации, вызываемые в стержнях внезапно приложенными силами, и явление удара.  [c.311]

Руководство курсовыми работами слушателей механической группы осуществляют преподаватели кафедры теоретической и прикладной механики. В течение первого месяца слушатели, как правило, заканчивают теоретическую разработку решения задач, выбранных в качестве курсовых работ. Большинство слушателей сами определяют тему своей курсовой работы. Чаще всего она связана с собственными научными исследованиями, и лишь малая часть курсовых работ имеет методическую направленность. Тем, кто затрудняется в выборе темы, предлагаются задачи по терретической механике, при выполнении которых целесообразно использовать ЭВМ [1]. В курсовых работах слушателей решались задачи статики, динамики, теории колебаний. В частности, рассматривались задачи 6 немалых колебаниях маятника, об интегрировании уравнения внешней баллистики, о малых колебаниях систем с тремя степенями свободы, которые не имеют решения в конечном виде и требуют применения численнь1х методов.  [c.21]


Смотреть страницы где упоминается термин Исследование задач статики : [c.24]    [c.67]    [c.4]    [c.64]    [c.216]    [c.18]    [c.279]   
Смотреть главы в:

Трехмерные задачи математической теории упругости и термоупругости Изд2  -> Исследование задач статики



ПОИСК



Задачи статики

Статика



© 2025 Mash-xxl.info Реклама на сайте