Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Различные задачи статики

Способ Бубнова — Галеркина. Способ, разработанный Н. Г. Бубновым и Б. Г. Галеркиным, получил широкое распространение для приближенного решения различных задач статики н динамики упругих тел. Для большей наглядности рассмотрим применение этого способа на примере решения задачи о поперечных колебаниях стержня переменного сечения, описываемых дифференциальным уравнением  [c.586]

Первые дошедшие до наших дней рукописи и научные сообщения в области механики принадлежат античным ученым Греции и Египта. Древнейшие папирусы и книги, в которых сохранились исследования некоторых простейших задач механики, относятся главным образом к различным задачам статики, т. е. учению о равновесии. В первую очередь здесь нужно назвать сочинения выдающегося философа древней Греции Аристотеля (384—322 дон. э.), который ввел в научный обиход название механика для широкой области человеческого знания, в которой изучаются простейшие движения материальных тел, наблюдаемые в природе и создаваемые человеком при его деятельности.  [c.53]


РАЗЛИЧНЫЕ ЗАДАЧИ СТАТИКИ  [c.123]

Первые, дошедшие до наших дней рукописи и научные сообщения в области механики принадлежат античным ученым Греции и Египта. Древнейшие папирусы и книги, в которых сохранились исследования некоторых простейших задач механики, относятся главным образом к различным задачам статики, т. е. учению о равновесии. В первую очередь здесь нужно назвать сочинения выдающегося философа древней Греции Аристотеля (384—322 гг. до н. э.), который ввел в научный обиход  [c.19]

Определение модулей и направлений реакций различных связей является основным содержанием задач статики и излагается в курсе ниже.  [c.14]

При проектировании механизмов после решения задачи статики производят расчеты на прочность, по результатам которых определяют размеры и формы тела (звена машины или прибора). Здесь распределенные нагрузки нельзя заменять сосредоточенными силами, так как характер деформации тел под действием распределенной нагрузки и ее равнодействующей будет совершенно различный.  [c.54]

Р е щ е н и е. Колебание отдельной материальной точки под действием силы тяжести (математический маятник) было изучено выше (см. определение 3.9.1). В рассматриваемом примере имеются две материальные точки, описывающие дуги различных радиусов за одно и то же время. Следовательно, каждая точка должна влиять на движение другой. Применив принцип Даламбера, эту динамическую задачу можно свести к обычной задаче статики, которая, будучи решенной, дает дифференциальные уравнения движения. Пусть ОА — а, ОВ = 6 и угол, образованный стержнем с вертикалью Ог, равен (9. Точка А описывает дугу окружности. Компоненты ее ускорения имеют вид  [c.377]

Одновременно рассмотрим указанные две основные задачи статики (приведения и равновесия) и для плоской системы сходящихся сил. Далее мы рассмотрим более трудные задачи приведения и равновесия различных систем сил, требующих более сложных методов и новых понятий.  [c.41]

Для решения нелинейных задач статики гибких стержней необходимо знать поведение внешних нагрузок в процессе деформации стержня, а также необходимо учитывать изменение краевых условий, например перемещение шарнира (рис. 1.2). Конечное состояние гибкого стержня будет различным, если, например, нагружать стержень в одном случае мертвой- силой ( мертвой называется нагрузка, сохраняющая при деформации системы свое направление), а в другом — следящей, т. е. силой, которая в процессе деформации стержня сохраняет свое направление по отношению к стержню, например образует неизменные углы с подвижными осями. В более общем случае нагружения на стержень кроме сосредоточенных сил и моментов могут действовать и распределенные силы и моменты.  [c.15]


В первой главе были получены уравнения равновесия для наиболее общего случая, когда осевая линия стержня в естественном состоянии является пространственной кривой. Эти уравнения содержат в себе ряд частных случаев задач статики стержней, а именно задачи статики стержней, осевая линия которых в естественном состоянии есть прямая (эти задачи рассмотрены в предыдущей главе) и плоская кривая. К частному случаю общи.х уравнений можно отнести и уравнения равновесия пространственно-криволинейных стержней, осевая линия которых в естественном состоянии представляет собой винтовую линию. Примеры использования таких стержневых элементов в различных областях техники приведены во Введении. Эти частные задачи статики стержней рассматриваются в данной главе.  [c.183]

Задачи динамики стержней являются более сложными, чем задачи статики, так как их решение часто требует определения статического напряженно-деформированного состояния, от которого зависят уравнения движения. Кроме того, уравнения движения стержней — это уравнения в частных производных, решение которых существенно сложнее, чем решение уравнений в обыкновенных производных, с которыми приходится иметь дело при решении задач статики, поэтому при подготовке специалистов задачам динамики стержней уделялось мало внимания, несмотря на то что в инженерной практике они и.меют очень широкое распространение. Только с развитием вычислительной техники и новых методов численного решения уравнений в частных производных появились реальные возможности решения задач динамики сплошной среды и в том числе задач динамики стержней. В настоящее время при численном решении уравнений в обыкновенных и частных производных используются различные методы и их комбинации, выбор которых и эффективность зависят от опыта исследователя и конкретных особенностей задачи.  [c.276]

В заключение этой главы сформулируем две основные задачи статики, решению которых для различных систем сил будут посвящены все дальнейшие рассуждения.  [c.29]

Предположим, что одна из трех сформулированных основных задач статики упругого тела (см. гл. IV, 2) имеет два различных решения  [c.91]

Эта глава посвящена оболочкам из композиционных материалов, причем основное внимание уделено построению различных вариантов теории тонких слоистых оболочек и их применению к задачам статики, динамики, устойчивости и термоупругости оболочек различных форм, а также их уточнению или формулировке других теорий, позволяющих учесть большие прогибы оболочек, трансверсальные эффекты и рассмотреть трехслойные конструкции.  [c.251]

Теперь мы покажем применение наших методов на различных задачах о равновесии тел по единообразию и быстроте разрешения этих задач можно будет судить о том, насколько эти методы совершеннее тех, какими до сих пор пользовались в статике.  [c.147]

В течение 1746—1749 гг. Эйлер подготовляет к печати несколько работ, посвященных поискам выражений, имеющих минимум в различных задачах динамики и статики. Эти работы были напечатаны в 1750—1753 гг.  [c.791]

Отсутствие аналитических решений для нелинейных задач статики и динамики конструкций АЭУ, описываемых уравнениями (3.40)-(3.50), обусловили широкое использование численных методов, ориентированных на применение современных ЭВМ, и главным образом метода конечных элементов (МКЭ). Многочисленные задачи, возникающие в процессе проектирования АЭС, начиная от физики реакторов, гидродинамики и теплообмена и до разнообразных задач динамики конструкций, исследования их прочности и разрушения с учетом взаимодействия с физическими полями различной природы, решаются в настоящее время этим методом [45]. Однако наибольшее применение МКЭ получил в уточненных расчетах напряженных состояний, возникающих в элементах конструкции АЭУ при эксплуатационных, аварийных и сейсмических воздействиях.  [c.104]

В главе основное внимание уделено описанию различных кинематических моделей деформирования трехслойных оболочек враш,е-ния и условиям стыковки со шпангоутами. Весьма трудоемкий этап получения разрешаюш,их уравнений задач статики, устойчивости и колебаний предлагается выполнять вариационно-матричным способом и включать его непосредственно в обш,ую программу расчета на ЭВМ.  [c.191]


Приведенный алгоритм сведения задачи Коши к интегральным соотношениям далее применяется для решения задач статики, динамики и устойчивости различных упругих систем.  [c.23]

Сложность конструктивных форм, многообразие действующих нагрузок, высокие требования к надежности конструкций создают большие трудности при расчете пространственного напряженного состояния цилиндрических тел на основе методов точной теории упругости. Однако используемые зачастую в инженерной практике различные варианты упрощенной теории упругости даже при решении задач статики не всегда дают удовлетворительные результаты. Оказывается, только часть статических характеристик, рассчитанная по этим теориям, может быть достаточно точным приближением к решению задач, основанному на классической теории упругости [47].  [c.153]

В разделе рассмотрены с позиций принципа возможных перемещений различные вариационные формулировки задач статики, устойчивости и динамики твердого деформируемого тела. В общем случае показано, как с использованием этих формулировок удается получить разрешающие дифференциальные уравнения или приближенные решения.  [c.5]

В четвертой главе на основе разработанных уравнений даны решения задач цилиндрического изгиба изотропных слоистых длинных пластин и панелей и решения задач об их выпучивании по цилиндрической поверхности. Кроме того, эти задачи рассмотрены еще и на основе уравнений других вариантов неклассических прикладных теорий, приведенных в гл. 3. Выполнен параметрический анализ полученных решений, что позволило уточнить границы их пригодности, оценить влияние поперечного сдвига и обжатия нормали на расчетные характеристики напряженно-деформированного состояния и критические параметры устойчивости. Дифференциальные уравнения задач статики рассматриваемых здесь элементов конструкций допускают аналитическое представление решения, что использовано при детальном исследовании и сравнительном анализе структур решений, полученных с привлечением различных геометрических моделей деформирования. На примере задачи цилиндрического изгиба длинной пластинки показано, что в моделях повышенного порядка появляются решения, описывающие ярко выраженные краевые эффекты напряженного состояния. С наличием последних связаны существенные трудности, возникающие при численном интегрировании краевых задач уточненной теории слоистых оболочек и пластин — их характер, формы проявления и пути преодоления также обсуждаются в этой главе.  [c.13]

Схема решения линейной задачи прочности, основанная на приведенных зависимостях, такова. Пусть рассматриваемая оболочка собрана из m различных армированных волокнами слоев и нагружена системой внешних сил, интенсивности которых пропорциональны одному скалярному параметру Р. В силу линейности дифференциальных уравнений и граничных условий соответствующей краевой задачи статики оболочки средние напряжения средние  [c.37]

Чтобы твердое тело под действием некоторой системы сил находилось в равновесии (в покое), необходимо, чтобы эти силы удовлетворяли определенным условиям равновесия данной системы сил. Нахождение этих условий является одной из основных задач статики. Но для отыскания условий равновесия различных систем сил, а также для решения ряда других задач механики оказывается необходимым уметь складывать силы, действующие на твердое тело, заменять действие одной системы сил другой системой и, в частности, приводить данную систему сил к простейшему виду. Поэтому в статике твердого тела рассматриваются следующие две основные проблемы 1) сложение сил и приведение систем сил, действующих на твердое тело, к простейшему виду 2) определение условий равновесия действующих на твердое тело систем сил.  [c.16]

В тех случаях, когда методика решения задач более или менее стандартна (в частности, большинство задач статики), указания к их решению представлены в виде алгоритмических предписаний—таблиц. Таких таблиц в пособии немного, так как в большинстве параграфов задачи таковы, что последовательность, а иногда и сам метод их решения могут быть различны, а следовательно, нецелесообразно давать строгую последовательность решения, оформленную в виде таблицы.  [c.3]

Вопросы статики конструкций при пластических деформациях начали разрабатываться существенно раньше вопросов динамики. Теоретическое обоснование различных методов решения задач статики идеально пластического  [c.8]

Большой вклад в создание строительной механики принадлежит ученым, работавшим в Петербургском институте инженеров путей сообщения, основанном в 1809 г. В 1820 г. сюда были приглашены в качестве профессоров Габриэль Ламэ (1795—1870) и Бенуа Поль Клапейрон (1799—1864). К этому времени относится ряд их мемуаров о ценных мостах, в которых содержалось ряд положений, примененных к различным задачам статики.  [c.151]

В предлагаемой вниманию читателя книге содержится систематическое изложение вариационных принципов и их приложений к различным задачам статики и динамики деформируемых твердых тел и конструкций. Книга публиковалась на английском языке издательством Пергамон пресс трижды (в 1968, 1975 и 1982 гг.). При подготовке к печати второго и в особенности третьего издания текст книги существенно перерабатывался и в него вносились значительные дополнения, отражающие новые результаты использования вариационных методов и применения вариационных принципов в методах конечных элементов. Настоящий перевод осуществлен с третьего издания.  [c.5]


Все встречающиеся в природе твердые тела под влиянием внешних воздействий в той или иной мере изменяют свою форму (деформируются). Величины этих деформаций зависят от материала тел, их геометрической формы и размеров и от действующих нагрузок. Для обеспечения прочности различных инженерных сооружений и конструкций материал и размеры их частей подбирают так, чтобы деформации при действующих нагрузках были достаточно малы . Вследствие этого при изучении условий равновесия вполне допустимо пренебрегать малыми- деформациями сс тветствующих твердых тел и рассматривать их как недеформируемые или абсолютно твердые. Абсолютно твердым телом называют такое тело, расстояние между каждыми двумя точками которого всегда остается постоянным. В дальнейшем при решении задач статики все тела рассматриваются как абсолютно твёрдые, хотя часто для краткости их называют просто твердыми телами.  [c.9]

Одной из задач статики является преобразование систем сил в системы, им эквивалентные. Неуравновешенная система сходящихся сил может быть заменена одной силой, эквивалентной данной системе сходящихся сил и называемой равнодействующей пучка сил. Определить величину и направление равнодействующей, или, как говорят, привести систему сходящихся сил к разнодействующей, можно различными способами.  [c.31]

Далее рассмотрим, как принцип возможных перемещений используется для решения задач статики, где различные конструкции не имеют ни одной степени свободы, и где любая из неизвестных реакций связей конс1рук-ции может быть определена с помощью всего одного уравнения - уравнения работ.  [c.148]

Эта глава посвящена пластинам из композиционных материа лов, особое внимание в ней уделено 1) построению теории сло-истИгх сред и ее приложению к различным слоистым структурам, встречающимся на практике 2) разработке линейной теории топких слоистых пластин и ее приложению к задачам статики, динамики, устойчивости и термоупругости 3) формулировке уточненных вариантов этой теории, позволяющих описать большие прогибы пластин, учесть податливость материала при сдвиге по толщине и рассмотреть трехслойные пластины. Предстоит еще многое сделать (особенно в экспериментальном плане) для того, чтобы установить, какой подход к построению уточненной теории, учитывающей трансверсальные деформации, является наиболее эффективным для решения инженерных задач. Необходимы также дальнейшие исследования проблем панельного флаттера, термоупругости и связанных с ними вопросов устойчивости.  [c.201]

Предлагаемая вниманию читателей книга освещает различные методы решения задач механики деформируемого твердого тела. Для иллюстрации возможностей методов выбраны задачи статики, динамики и устойчивости стержневых и пластинчатых систем, т.е. задачи сопротивления материалов, строительной механики и теории упругости, имеющих важное практическое и методологическое значения. Каждая задача механики деформируемого твердого тела содержит в себе три стороны 1. Статическая - рассматривает равновесие тела или конструкпди 2. Геометрическая - рассматривает связь между перемещениями и деформациями точек тела 3. Физическая -описывает связь между деформациями и напряжениями. Объединение этих сторон позволяет составить дифференциальное уравнение задачи. Далее нужно применить методы математики, которые разделяются на аналитические и численные. Большим преимуществом аналитических методов является то, что мы имеем точный и достоверный результат решения задачи. Применение численных методов приводит к получению просто результата и нужно еще доказывать его достоверность и оценивать величину погрепшости. К сожалению, до настоящего времени получено весьма мало точных аналитических решений задач механики деформируемого твердого тела и других наук. Поэтому приходится применять численные методы. Наличие весьма мощной компьютерной техники и развитого программного обеспечения практически обеспечивает решение любой задачи любой науки. В этой связи большую популярность и распространение приобрел универсальный численный метод конечных элементов (МКЭ). Применительно к стержневым системам алгоритм МКЭ в форме метода перемещений представлен во 2, 3 и 4 главах книги. Больпшми возможностями обладает также универсальный численный метод конечных разностей (МКР), который начал развиваться раньше МКЭ. Оба этих метода по праву занимают ведущие места в арсенале исследований. Большой опыт их применения выявил как преимущества, так и очевидные недостатки. Например, МКР обладает недостаточной устойчивостью численных операций, что сказывается на точности результатов при некоторых краевых условиях. МКЭ хуже, чем хотелось бы, решает задачи на определение спектров частот собственных колебаний и критических сил потери устойчивости. Эти и другие недостатки различных методов способствовали созданию и бурному развитию принццпиально нового метода решения дифференциальных уравнений задач механики и других наук. Метод получил название метод граничных элементов (МГЭ). В отличии от МКР, где используется конечно-разностная аппроксимация дифференциальных операторов, в МГЭ основой являются интегральное уравнение задачи и его фундаментальные решения. В отличие от МКЭ, где вся область объекта разбивается на конечные элементы, в МГЭ дискретизации подлежит лишь граница объекта. На границе объекта из системы линейных алгебраических уравнений определяются необходимые параметры, а состояние во  [c.6]

Пример 7.3 Рассмотрим жестко защемленную квадратную пластину, нагруженную силами N =Ny=N (рисунок 7.7,в). Выше отмечалось, что наибольшая погрешность вариационного метода Канторовича-Власова наблюдается у квадратных пластин, а условия ее опирания не позволяют получить точного аналитического решения задач статики, динамики и устойчивости. Поэтому данная задача позволяет дать оценку точности и эффективности различных методов, в том числе и МГЭ. Матрица устойчивости и ее определитель для краевых условий по рисунге 7.7,в примут вид  [c.436]

Решение указанных задач сводится в простейших случаях к совокупности задач Дирихле или смешанных задач Келдыша — Седова теории аналитических функций комплексного переменного. Процедура нахождения решения оказывается принципиально не более сложной, чем для аналогичных задач статики и стационарной динамики. Вначале выводятся общие представления решения через аналитические функции комплексного переменного для произвольного индекса автомодельности и дано описание общего метода решения. Затем метод демонстрируется на некоторых конкретных задачах из указанного класса. Рассмотрение ограничено плоскими задачами для однородного и изотропного тел, однако метод нетрудно обобщить на случай анизотропного кусочно-однородного тела, когда верхняя и нижняя полуплоскости имеют различные упругие постоянные.  [c.113]

Важно отметить, что гипотеза Бергера до настоящего времени так и не получила ясной механической интерпретации, поэтому возможность ее использования при решении различных задач теории пластин и пологих оболочек неоднократно обсуждалась в литературе [ 3.1, 3.9, 3.21, 3.22, 3.25]. По-видимому, подход Бергера оправдывает себя в нелинейных задачах статики пластин и пологих оболочек. Во-первых, сравнение с результатами более точного анализа, основанного на уравнениях Фёппля-Кармана, указывает на незначительную погрешность гипотезы при определении изгибного напряженного состояния для пластин, прогиб которых сравним с толщиной во-вторых, имеется возможность для получения точных решений, что, несомненно, яв ляется главным преимуществом метода.  [c.69]


Многие задачи статики, как мы уже знаем, заключаются в определении реакций связей, в частности в определении реакций опор различного рода балочных систегл, ферм и т. п.  [c.92]

Аналитическая динамика начала развиваться в конце XVII— начале XVIII в., в период буржуазной революции в Европе. Торричелли и Бернулли положили начало аналитической статике. Галилей и Ньютон сформулировали основные законы динамики, а в конце XVIII в. Лагранж разработал основы современной аналитической динамики. Весь этот период характеризуется бурным развитием техники и точных наук. В результате появилась потребность к обобщению накопленных знаний, к созданию таких принципов, откуда бы вытекали все основные положения механики. Одним из результатов такого обобщения явился принцип Даламбера — Эйлера — Лагранжа, как наиболее общий принцип механики. Он позволил сформулировать различные задачи о движении в виде системы дифференциальных уравнений.  [c.443]


Смотреть страницы где упоминается термин Различные задачи статики : [c.108]    [c.317]    [c.2]    [c.40]    [c.43]    [c.74]    [c.208]    [c.27]    [c.9]   
Смотреть главы в:

Курс теоретической механики Издание 2  -> Различные задачи статики



ПОИСК



Задачи статики

Статика



© 2025 Mash-xxl.info Реклама на сайте