Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Механика сплошных сред, ее основные законы и уравнения

Физические законы механики сплошной среды выражаются тензорными уравнениями. Вследствие линейности и однородности тензорных преобразований тензорные уравнения, верные в одной системе координат, верны и в любой другой. Такая инвариантность тензорных соотношений относительно преобразований координат является одной из основных причин того, что тензорное исчисление весьма полезно в изучении механики сплошной среды.  [c.9]


Многие системы механики сплошной среды, такие как уравнения газовой динамики, уравнения магнитной гидродинамики, уравнения теории упругости, уравнения Максвелла принадлежат к описанному типу систем уравнений, выражающих законы сохранения, и мы в дальнейшем будем рассматривать в качестве основного случая именно такие системы.  [c.17]

Еще одно основное уравнение механики сплошной среды дает закон сохранения энергии. Согласно этому закону (первому закону термодинамики) изменение полной энергии индивидуального объема сплошной среды происходит за счет притока извне всех видов энергии, из которых мы ограничимся только притоками механической энергии (работой внешних сил) и тепловой.  [c.121]

Использование законов сохранения для бесконечно малых объемов приводит к получению системы основных дифференциальных уравнений механики сплошных сред.  [c.62]

Равенство (4.2.3) является основным постулируемым динамическим соотношением механики сплошной среды [87]. Как второй закон Ньютона является исходным в механике точки, так и уравнение (4.2.3) лежит в основе механики сплошной среды и является исходным для исследования любых движений сплошной среды. Подробно вопросы, связанные с законом сохранения количества движения, рассмотрены в [87].  [c.182]

На современном научном уровне в прямоугольных декартовых и общих криволинейных координатах изложены основы математической теории пластичности специальные вопросы математики, кинематика и динамика деформируемой среды, основные законы механики сплошной среды применительно к обработке металлов давлением, реологические уравнения, постановка и методы решения краевых задач теории пластичности.  [c.2]

Напряжения, скорости и плотность по обе стороны поверхности разрыва связаны между собой условиями, которые должны удовлетворять основным уравнениям механики сплошной среды и уравнениям состояния выбранной реологической модели. Основные уравнения механики сплошной среды лучше использовать в интегральном виде, так как для разрывных процессов интегральная формулировка физических законов по сравнению с дифференциальной обладает большей общностью. Для непрерывных же процессов интегральная и дифференциальная формулировки полностью эквивалентны [например, закон сохранения массы в интегральной форме (V.8) и дифференциальное уравнение неразрывности (V.10), закон сохранения импульса в интегральной форме (V.14) и дифференциальные уравнения движения (V.18)l. Используя закон сохранения массы (V.8) и закон сохранения импульса  [c.247]


Термодинамика сплошной среды 174 Закон изменения энергии (174). Сводка основных уравнений механики сплошных сред (175).  [c.7]

В учебнике (2-е изд.— 1978 г.) рассматриваются статистическое обоснование основных понятий и полевых функций механики сплошной среды (МСС), даны теория деформаций, напряжений и процессов деформации и нагружения в окрестности точки тела, законы сохранения и функциональные представления термодинамических функций, теория определяющих соотношений и уравнений состояния, замкнутые системы уравнений МСС и общие постановки краевых задач. Даны общие преобразования квазилинейных уравнений МСС, упрощающие анализ и нахождение их решений. Подробно излагаются теория классических сред, сред со сложными физическими свойствами, описано действие электромагнитного поля, а также дана теория размерности и подобия с примерами ревизионного анализа уравнений МСС.  [c.2]

Целью предлагаемой книги является последовательное изложение результатов теоретического исследования одномерных нелинейных волн и в первую очередь ударных волн в упругих средах. Главное внимание уделено квазипоперечным волнам. Продольные или квазипродольные волны были достаточно подробно изучены ранее. Результаты, составляющие содержание книги, получены в основном, в течение последних 15 лет и в связном последовательном виде ранее не публиковались. Кроме того, книга содержит подробное изложение общих математических методов изучения нелинейных гиперболических систем уравнений, выражающих законы сохранения. Эти вопросы рассматриваются в полном объеме, в виде, приспособленном для использования в механике сплошной среды. Математическая часть книги (Глава 1) может представлять самостоятельный интерес для читателей, работающих в других областях механики и физики.  [c.7]

Основные уравнения механики сплошной среды представляют собой так называемые законы сохранения, выражающие тот  [c.13]

Связующим звеном между механикой сплошной среды и термодинамикой является теорема энергии. Если нельзя пренебречь тепловыми эффектами, то механическую теорему энергии следует заменить первым основным законом термодинамики кроме того, в число основных соотношений следует включить уравнение теплопроводности.  [c.8]

Равенство (2.2) является основным постулируемым динамическим соотношением механики сплошной среды. Подобно тому как второй закон Ньютона является исходным уравнением в механике точки, уравнение количества движения (2.2) положено  [c.138]

Главы I и II содержат основные уравнения механики сплошной среды и основные законы пластичности. Введены понятия о тензорах и девиаторах напряжения, деформации и скорости деформации, а затем сформулированы их основные свойства.  [c.3]

В книге даны основы механики сплошной среды (МСС) физическая трактовка основных понятий и статистическое обоснование законов МСС аксиоматика МСС кинематика и теория внутренних напряжений в средах физические законы — сохранения массы, импульса, энергии и баланса энтропии методы получения замкнутых систем уравнений, основные типы граничных условий и постановки краевых задач МСС. Даны замкнутые системы уравнений для классических сред (газов, жидкостей, упругих тел) и для сред со сложными свойствами (вязко-упругих, нелинейно вязких, упруго- и вязко-пластических, плазмы и др.) при действии электромагнитного поля. Дана теория размерностей и подобия с ревизионным анализом уравнений МСС, критериями подобия и моделирования, с примерами автомодельных решений.  [c.3]


Поэтому для основной системы дифференциальных уравнений движения сплошной среды (или системы основных законов движения) необходимо предварительно провести ее замыкание назначить или отыскать из соображений, не связанных напрямую с основными постулатами ньютоновской механики, недостающ,ие 18 скалярных зависимостей между искомыми функциями. Это будет сделано в 14 при классификации сплошных сред для каждого из принятых классов. В дальнейшем будут рассматриваться только классические среды (в пренебрежении внутренним моментом количества движения).  [c.303]

Предположение о наличии ветра в обращенном движении соответствует основным законам механики сжимаемой среды. Уравнения механики сплошной сжимаемой среды при наличии внешних объемных сил рд имеют вид [24]  [c.50]

Все мы привыкли к тому, что основные разделы физики построены на принципах динамики. Все начинается с механики материальной точки и с законов Ньютона, которые вводят основные динамические понятия массу, скорость, импульс и силу. Теоретическая механика всего лишь оформляет элементарные законы механики в более пышные одежды дифференциальных уравнений и вариационных принципов. На базе простейших законов движения материальной точки строятся более сложные уравнения движения сплошных сред газов, жидкостей и упругих тел. Здесь впервые появляются непрерывные функции координат и времени, играющие роль полей, хотя собственно полями принято считать поля в вакууме, например электромагнитное поле. Уравнения для полей — это тоже уравнения динамики. Термодинамика только на первый взгляд кажется феноменологической наукой, а в действительности она может быть построена на базе статистической физики, представляющей собой лишь специфическую разновидность динамики. Тот факт, что физика строится на принципах динамики, проявляется и в основных физических единицах измерения (например, сантиметр, грамм, секунда), которые изначально вводятся в механике материальной точки, а затем переносятся в другие, более сложные разделы физики.  [c.15]

Основные уравнения гидроаэромеханики основываются на законах сохранения массы, количества движения и энергии, которые вместе обычно кратко именуются законами сохранения. Особенность заключается в том, что в механике жидкости эти законы необходимо записать в форме, пригодной для изучения движения сплошной деформируемой среды.  [c.14]

В первой части курса показано, что из законов Ньютона следуют уравнения, необходимые, но недостаточные для описания движения произвольн )1х сплошных сред. Дополнительные аксиомы, замыкающие уравнения движения, определяют различные разделы механики сплошных сред, основными из которых являются гидродинамика (вторая часть) и механика деформируемых тел (четвертая часть). В книгу включена теория фильтрации (третья часть), которая является одной из технических дисциплин. Однако широкая разработка этой области в настоящее время по праву позволяет считать теорию фильтрации одним из разделов механики сплошных сред.  [c.3]

Основные концепции континуальных теорий смесей основательно изучены в рамках современных теорий механики сплошных сред. В теориях смесей предполагается наличие двух или более сред в каждой точке пространства, поэтому общие законы сохранения для смесей сформулировать нетрудно, но практическое их применение к композиционным материалам сталкивается с определенными затруднениями, связанными с трудностями задания законов взаимодействия компонентов на основе информации об их взаимном расположении и физических характеристиках. Для слоистой среды теория смеси, в которой параметры взаимодействия компонентов были определены на основании решений некоторых простейших квазистатических задач, предложена в работе Бедфорда и Стерна [12]. Новизна теории Бедфорда и Стерна состоит в том, что допускаются различные движения компонентов смеси, причем связь между этими движениями определяется моделью взаимодействия компонентов в реальном композите. В работе Бедфорда и Стерна [13] развита общая термомеханическая теория, основанная на этой модели, а также выведена система уравнений, применимых к определенному классу армированных волокнами композитов (см. Мартин и др. [45]).  [c.380]

В механике сплошной среды тело представляют в виде некоторой субстанции, называемой материальным континуумом, непрерывно заполняющей объем геометрического пространства. Бесконечно малый объем тела также называется частицей. Феноменологически вводятся пoняtия плотности, перемещения и скорости, внутренней энергии, температуры, энтропии и потока тепла как непрерывно дифференцируемых функций координат и времени. Вводятся фундаментальные понятия внутренних напряжений и деформаций и постулируется существование связи между ними и температурой, отражающей в конечном счете статистику движения и взаимодействия атомов. Б МСС используются основные уравнения динамики системы и статистической механики, в первую очередь законы сохранения массы, импульса, энергии и баланса энтропии. Обоснование этого и установление соответствия  [c.7]

Во второй части излагаются кинематика и теория деформаций сплошной среды в эйлеровом и лагранжевом описаниях, формулируются основные законы динамики и термодинамики, выводятся дифференциальные уравнения движения среды, обсуждаются возможные типы начальных и граничных условий. Рассмотрены вариационные принципы в механике жидкости и газа и в теории упругости, методы теории размерностей и подобия. Теоретический материал сопровождается под-боркой задач с решениями в конце каждого параграфа. Приведены также сведения об ученых, создававших механику сплошной среды.  [c.3]


Теория пластичности базируется на основных уравнениях механики сплошной среды. Поэтому в теории пластичности используются условия равновесия для напряжений и уравнения, связывающие перемещения с деформациями. Кроме этого, для построения теории пластичности ещё необч ходимы две зависимости условие, связывающее между собой напряжения при наступлении пластического состояния, — так называемое условие пластичности, и завич симость между деформациями и напряжениями, аналогичная закону Гука в теории упругости.  [c.131]

Считая механику сплошной среды разделом математики, К. Трусделл использует те и только те понятия, которые -допу-скают формализацию. При этом он опирается, главным образом, на аксиоматику Нолла. Характерным для книги является углубленный интерес к первичным элементам механики (телам, силам, движениям), описываемым с помощью формальных структур. Подробно обсуждаются такие понятия, как система отсчета и конфигурация, а также принцип независимости от системы отсчета, или принцип материальной объективности. Приводятся формулировки основных законов механики. Все это относится в одинаковой степени ко всем материалам, будь то жидкость, газ или твердое тело. Различие между материалами устанавливается теорией определяющих уравнений, изложение которой является одним из наиболее интересных моментов в книге. Важно подчеркнуть, что теория определяющих уравнений — это сводка необходимых ограничений и выяснение структуры оп-  [c.5]

Большинство основных уравнений механики сплошной среды отражает основные законы физики (совместность, сохранение массы, баланс количества движения, момента количества движения и энергии и т. д.). Эти соотношения применимы к любому виду материала, но может оказаться удобным использовать эти соотношения в различных (быть может, и эквивалентных) формах при применении их, например, для жидкостей и твердых тел. Различие между типами сплошных сред математически выражается главным образом в так называемых определяющих уравнениях. Эти уравнения описывают специфические свойства (и де-ализированных) материалов с помощью некоторого соотношения между кинематическими переменными (деформация, скорость деформации и т. д.) и переменными  [c.7]

В последние годы метод конечных элементов (МКЭ) стал одним из наиболее эффективных численных методов решения краевых задач механики сплошных сред. Широкое использование этого метода в значительной мере объясняется простой физической интерпретацией основных его вычислительных операций, наличием машинных программ, обеспечивающих высокую степень автоматизации трудоемких операции составления н решения систем вариационно-разностных уравнений. Большим достоинством МКЭ является также его исключительная иидиффереитиость в отношении геометрии рассматриваемой области, краевых условий задачи, законов изменения свойств среды и внешних воздействий на область.  [c.5]

С середины XVIII в. развернулись теоретические исследования но изучению движения жидкости, положившие начало теоретической гидродинамике. Честь ее создания принадлежит Российской Академии наук в лице Леонарда Эйлера и Даниила Бернулли. В труде Обш,ие принципы движения жидкостей Л. Эйлер впервые вывел основные дифференциальные уравнения движения так называемой идеальной жидкости , положив начало важнейшей отрасли механики сплошной среды - гидроаэродинамике. Л. Эйлеру гидроаэродинамика обязана, в частности, введением понятия давления. Д. Бернулли принадлежит открытие фундаментального закона гидродинамики, устанавливающего связь между давлением и скоростью в потоке несжимаемой жидкости, обобщенного ныне для случая сжимаемой жидкости.  [c.7]

Исследователи, изучающие движение сыпучей среды, из общих законов механики могут предсказать основные качественные черты движения. Поэтому к математическим способам описания неизвестных эмпирических зависимостей, в которых выбор вида аппроксимирующей функции осуществлен формальным образом, обычно не прибегают. Наиболее привычной формой описания движения являются дифференциальные уравнения. Достаточно просто решаются дифференциальные уравнения с постоянными коэффициентами. Поэтому сплошную среду описывают моделью, состоящей из системы твердых тел, связанных взаимно и с пове])Хностью лотка со стандартными элементами линейной упругости, линейной вязкости, сухого трения с постоянными коэффициентами и простейшими ударными элементами. Такие модели позволяют получить общее решение, поэтапно используя решения линейных систем. Число масс упругих, вязких, ударных элементов сухого грения определяет число посгоянных, подлежащих определению из эксперимента. С увеличением числа элементов возрастает точность описания экспериментальных результатов. Такие модели способны описывать с достаточной гочносгью все необходимые зависимости — = Кг (о), где вектор а — совокупность всех параметров, влияющих на /(, т. е пространство параметров, в котором ведется эксперимент. Решение дифференциальных уравнений движения дает теоретические значения К . Но эти значения зависят от численных значений параметров модели с . Их определяют, минимизируя квадратическую ошибку между экспери енгальными значениями (aj и теоретическими значениями подсчитанными при тех же комбинациях параметров а,-, при  [c.90]

Фундаментальные открытия Галилея, Гюйгенса и Ньютона привели в конце XVII в. к расцвету обнюй механики и подготовили предпосылки к мощному скачку в развитии механики жидкости и газа. Особенное значение имело установление Ньютоном основных законов и уравнений динамики, обобщение которых на сплошные среды и в первую очередь  [c.19]

В этой главе ш, как правило, первоначально будем формулировать основные постулаты (принципы) механики в интегральной форле для произвольной области, ввделенной внутри сплошной среды. Базируясь на этих законах, далее получаем точечные (дифференциальные и конечные) уравнения, справедливые для любой точки ореды.  [c.71]


Смотреть страницы где упоминается термин Механика сплошных сред, ее основные законы и уравнения : [c.7]    [c.6]    [c.93]    [c.68]   
Смотреть главы в:

Курс механики сплошных сред  -> Механика сплошных сред, ее основные законы и уравнения



ПОИСК



Закон Уравнение

Законы механики основные

Механика сплошной

Механика сплошных сред

ОСНОВНЫЕ ЗАКОНЫ МЕХАНИКИ СПЛОШНОЙ СРЕДЫ

Основные законы

Среда сплошная

Уравнение механики основное

Уравнение основное

Уравнения основные



© 2025 Mash-xxl.info Реклама на сайте