Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Динамика твердого тела Сила инерции твердого тела

Пересказывать содержание этого труда означает повторять то, что до сих пор составляет основное содержание главы Динамика твердого тела в учебниках механики. Характерно для Эйлера, что он нередко идет от движения к силам , методически отделяет кинематическую часть от динамической, систематически использует, помимо неподвижной, подвижную систему координат, связанную с телом,— систему главных осей инерции. Наконец, составив достаточно сложного вида уравнения вращательного движения, Эйлер обнаруживает, что они значительно упрощаются, если ввести в каче-  [c.154]


М = -г X Q т, М = а SI г" = SI X г, а = П X а - а X SI. (5.4) Но такие же уравнения описывают динамику твердого тела, вращающегося вокруг неподвижной точки М выступает в роли момента импульса, S — в роли времени, а — тензора инерции, Q — угловой скорости тело нагружено моментом (-т) и сосредоточенной силой (-Q)  [c.145]

Совместный учет действия сил и материальных свойств тел или ючки содержится в аксиомах динамики. Такие аксиомы статики, как аксиома о параллелограмме сил, о равенстве сил действия и противодействия, аксиома связей, справедливы и в динамике. Так как в статике рассматриваются свойства и неравновесных систем сил, под действием которых твердое тело или точка не могут находиться в покое относительно инерциальной системы отсчета, то для оправдания этого в статике можно считать, что эти системы сил являются частями более укрупненных равновесных систем сил, под действием которых тело или материальная точка находится в покое или совершает движение по инерции.  [c.15]

Приведение сил инерции к силе, равной главному вектору, и паре сил, момент которой равен главному моменту, является одним из важных этапов решения задач динамики несвободной систе.мы материальных точек в случае применения метода кинетостатики, либо общего уравнения динамики (см. ниже 5), а также при определении динамических давлений на ось вращающегося твердого тела (см. ниже 3). Отметим, что с силами инерции связаны формальные методы решения задач. Все упомянутые далее задачи могут быть решены несколько проще без применения сил инерции. В этой книге излагаются методы решения задач с использованием сил инерции лишь потому, что эти методы, в силу сложившихся исторических традиций, еще довольно распространены в инженерной практике. В динамике нет таких задач, которые не могли бы быть решены без применения сил инерции. В дальнейшем неоднократно дается сравнение методов решения задач с использованием и без использования сил инерции.  [c.342]

Поступательное движение твердого тела. Наиболее общим приемом составления уравнений динамики поступательного движения твердого тела является применение теоремы о движении центра инерции системы материальных точек. Теорема преимущественно используется в проекциях на оси декартовых координат. В число данных и искомых величин должны входить массы материальных точек, их уравнения движения, внешние силы системы. Решение обратных задач упрощается в случаях, когда главный вектор внешних сил, приложенных к твердому телу, постоянен либо зависит только от 1) времени, 2) положений точек системы, 3) скоростей точек системы. Труднее решать обратные задачи, в которых главный вектор внешних сил одновременно зависит от времени, положения и скоростей точек системы.  [c.540]


Применяя общие теоремы динамики, дифференциальное уравнение вращения твердого тела вокруг неподвижной оси, дифференциальные уравнения плоского движения твердого тела, динамические уравнения Эйлера, уравнения Лагранжа, часто в число рассматриваемых сил ошибочно включают силы инерции. Следует помнить, что силами инерции следует пользоваться только в случае применения  [c.544]

При использовании общего уравнения динамики необходимо уметь вычислять элементарную работу сил инерции системы на возможных перемещениях. Для этого применяются соответствующие формулы для элементарной работы, полученные для обычных сил. Рассмотрим их применение для сил инерции твердого тела в частных случаях его движения.  [c.388]

Полностью решить динамическую задачу, применяя методы статики, можно далеко не всегда. Наиболее э( х )ективно применяется принцип Даламбера при решении первой основной задачи динамики, заключающейся в определении сил, если известен закон движения материальной точки, находящейся под их воздействием. Эта задача с формальной точки зрения напоминает задачи статики, так как именно в статике и рассматривается вопрос об определении некоторых неизвестных сил, приложенных к точке или к абсолютно твердому телу. Поэтому в тех случаях, когда в задачах динамики неизвестными являются силы, включая и силы инерции, такие задачи можно эффективно решать посредством принципа Даламбера.  [c.421]

Из сказанного следует, что если к движущейся материальной точке приложить силу инерции, то для полученной системы сил можно применить уравнения статики твердого тела. Задача динамики по форме решения, таким образом, сводится к задаче статики. Этот прием решения задач динамики, основанный на принципе Даламбера, называют методом кинетостатики.  [c.163]

Работы Галилея по динамике были продолжены и развиты знаменитым голландским ученым Гюйгенсом (1629—1695), который создал теорию колебаний физического маятника, введя при этом понятия о центре качаний, о приведенной длине физического маятника и о моменте инерции тела относительно оси. Кроме того, Гюйгенс обобщил введенное Галилеем понятие ускорения на случай криволинейного движения точки и установил понятие о центростремительной и центробежной силах. Ряд его работ относится к теории удара упругих твердых тел.  [c.14]

Уравнение (14.37) называется основным уравнением динамики для вращательного движения твердого тела. Оно похоже по форме на основное уравнение динамики точки та = Г. При вращении момент инерции тела играет роль, аналогичную той, которую играет масса точки в уравнении Ньютона, угловое ускорение — роль ускорения точки, а сум.ма моментов внешних сил — роль силы, действующей на точку.  [c.172]

Это и есть основное уравнение динамики для твердого тела, вращающегося вокруг неподвижной оси. Итак, момент внешних сил, вращающих тело вокруг данной оси, равен моменту инерции тела относительно этой оси, умноженному на угловое ускорение тела.  [c.64]

Это основное уравнение динамики для вращательного движения твердого тела. Оно устанавливает, что произведение момента инерции тела на его угловое ускорение равно сумме моментов всех сил относительно оси вращения..  [c.170]

Все перечисленные силы распределены (как правило, неравномерно) по объему или по поверхности звена. Так как перемещение всякого элемента звена механизма вследствие упругой деформации этого звена на много порядков меньше его перемещения, обусловленного кинематикой механизма, то при исследовании динамики механизма можно считать его звенья абсолютно твердыми телами. Поэтому движение не изменится, если заменить распределенные массовые и поверхностные силы их равнодействующими. После такой замены сила тяжести звена будет приложена в центре его масс, а сила поверхностного давления — в центре давления, лежащем внутри контура, ограничивающего поверхность, подверженную давлению. Так как в отличие от поля тяготения поле сил инерции неоднородно, то положение точки приложения равнодействующей распределенных по массе тела элементарных сил инерции все время изменяется в процессе движения. Поэтому распределенные силы инерции удобнее представить главным вектором сил инерции, приложенным в центре масс, и главным моментом сил инерции.  [c.37]


Что касается точной формы, в которой эти новые физические гипотезы должны быть введены, то в этом отношении мы имеем некоторую свободу выбора. Согласно одному предположению, лк >бую часть материи можно рассматривать как состоящую из математических точек, находящихся одна от другой на конечном расстоянии, наделенных коэ-фициентами инерции, действующих одна на другую с силами, направленными вдоль прямых, их соединяющих и подчиненных закону равенства действия и противодействия 1). В случае твердого тела" предполагается, что эти силы таковы, что сохраняют неизменной общую конфигурацию системы. На основании этой гипотезы мы можем сразу применить теоремы о количестве движения системы и о моменте количеств движения системы, доказанные в предыдущей главе. Мы увидим, что эти теоремы достаточны для необходимого обоснования динамики твердого тела.  [c.136]

Там рассматривается задача о вращении Земли около ее центра масс под воздействием сил притяжения к Солнцу и Луне. Оперируя моментами инерции, Даламбер вводит главные оси инерции тела, выявляет в рассматриваемой им астрономической задаче наличие малых колебаний (нутационного движения) тела (Земли) около движущейся но конусу прецессии оси вращения и дает полное динамическое объяснение известного со времен Гиппарха явления предварения равноденствий. Все это — результаты первостепенной важности, и все-таки это еще не общая теория вращательного движения твердого тела. Кинематика и динамика проблемы у Даламбера не отделены друг от друга. В 60-е годы Даламбер в работе О движении тела произвольной формы под действием любых сил ставит перед собой задачу дать общую теорию, но по сути добавляет только более систематизированное изложение вопроса о малых колебательных движениях твердого тела относительно центра инерции (на основе линеаризованных уравнений).  [c.154]

Он писал История науки раскрывает генезис и эволюцию основных ее понятий, идей и законов, благодаря чему они могут быть поняты и освоены гораздо естественней, глубже и поэтому прочнее. Такие фундаментальные понятия механики, как сила, свойство инерции материи, масса, сила инерции и т. п., не могут быть поняты и освоены сколь-нибудь удовлетворительно без представления об их эволюции. Точно так же важно для успешного усвоения изложить историю таких понятий, как, например, момент силы относительно точки, вектор ускорения, работа силы, моменты инерции твердого тела и т. п., или, наконец, такого важного понятия, как сила движущегося тела , понятия, из анализа которого и выросла, в сущности, наша классическая динамика .  [c.167]

В формулах, выражающих кинетическую энергию твердого тела при поступательном и вращательном движении, имеется некоторая аналогия. Так, в формуле кинетической энергии для вращательного движения линейная скорость заменена угловой скоростью ш, а масса т заменена моментом инерции I. Момент инерции / в динамике вращательного движения твердого тела играет ту же роль, какую играет масса в динамике поступательного движения. Если в поступательном движении масса является мерой инертности тела (для большей массы требуется приложить большую силу, чтобы сообщить телу заданное ускорение), то мерой инертности во вращательном движении служит момент инерции. Момент инерции тела изменяется в зависимости от положения оси вращения данного тела Масса же тела остается величиной постоянной. В этом их основное различие. Момент инерции твердого тела удобно выражать в виде  [c.127]

Как уже отмечалось, в инерциальной системе координат выполняется закон инерции. Это означает, в частности, что тело, находящееся в начальный момент в покое, останется пребывать в этом состоянии, если на него не действуют никакие силы. (Полная формулировка закона инерции будет дана в разделе динамики.) Если абсолютно твердое тело остается в состоянии покоя при действии на него системы сил (р1,. .., Р ), то последняя называется уравновешенной системой сил или системой сил, эквивалентной нулю  [c.19]

Итак, освободив систему и прибавив к внешним силам еще и силы инерции, мы можем для любой системы применять уравнения равновесия твердого тела. Этим путем получим общие теоремы, справедливые для произвольной системы это будут общие законы динамики системы.  [c.170]

Для полного описания движения твердого тела (если моменты сил отсутствуют или заданы как функции г, V, а>, ф, 0, /), как следует из уравнений Эйлера, необходимо знать еще три числа - моменты инерции тела относительно главных осей. То есть с точки зрения динамики свободного движения все многообразие твердых тел четырехмерно. Для задачи с одной закрепленной точкой любое конкретное твердое тело может быть охарактеризовано тремя числами.  [c.186]

Динамика системы твердых тел состоит из двух томов. В первом томе, содержащем общие сведения по динамике системы твердых тел, рассматриваются моменты инерции, принцип Даламбера, движение тела относительно неподвижной оси, движение тела, параллельное неподвижной плоскости, пространственное движение, теоремы об изменении момента количеств движения, живой силы, уравнения Лагранжа, малые колебания. Первый том представляет значительный интерес с точки зрения подхода к изложению материала (например, все теоремы выводятся из принципа Даламбера наряду с обычными силами систематически рассматриваются ударные силы), а также из-за огромного числа примеров и обширной библиографии.  [c.7]


Многие детали станков имеют оси симметрии, совпадающие с осями основной системы координат. Асимметрия деталей станка приводит к наклону осей инерции твердого тела отцосительно осей основной системы координат. Наклон главных осей инерции вызывает появление инерционных связей в уравнениях движения для моментов сил. Важнейшие корпусные детали не имеют большой асимметрии. Асимметричные детали мало влияют на динамику станка. Чтобы избежать появления инерционных связей в уравнениях движения и учитывая изложенное, наклоном главных осей инерции тел со слабой асимметрией в дальнейшем пренебрегаем.  [c.180]

К системе сил инерции точек твердого тела можно применить метод Пуансо —метод приведения сил к некоторому центру, рассмотренный в статике (ем. ч. I Статика , 27). В динамике за центр приведения сил инерции выбпрагот обычно центр масс тела С. Тогда в результате приведения получится сила Ф, равная главному вектору сил инерции точек тела, и пара сил с моментом М равным главному моменту сил инерции относительно центра масс  [c.284]

Общее уравнение динамики (117.6) позволяет составить дифференциальные уравнения движения любой механической системы. Если механическая система состоит из отдельных твердых тел, то силы и[]ерции точек каждого тела можно привести к силе, приложенной в некоторой точке тела, и паре сил. Сила равна главному вектору сил инерции точек этого тела, а момент пары равен главному моменту этих сил относительно центра приведения (см. 109).  [c.320]

Полученными выше формулами для какого угодно твердого тела гироскопической структуры мы будем неоднократно пользоваться в динамике твердого тела (гл. VII, VIII, IX). Важно отметить, что на основании того обстоятельства, что всякая пара взаимно перпендикулярных прямых, расположенных в экваториальной плоскости, вместе с гироскопической осью составляет тройку главных осей инерции, все эти формулы останутся в силе даже тогда, когда вместо осей Oxyz, неизменно связанных с твердым телом, будут выбраны оси ОхуУ г, вращающиеся по какому-нибудь закону вокруг гироскопической оси г (стереокинетическая система отсчета для тела с гироскопической структурой).  [c.243]

В 1909 г. было опубликовано исследование Н. Е. Жуковского Сведение динамических задач о кинематической цепи к задачам о рычаге . Оно содержит теорему, имеющую глубокое принципиальное значение. Сущность этой теоремы состоит в том, что вопрос о равновесии механизма, т. е. системы тел, сводится к более простой задаче равновесия одного твердого тела, вращающегося вокруг данного центра. Метод Жуковского давал возможность решить общую задачу динамики механизмов (для механизмов с одной степенью свободы), состояи ю в определении движения механизмов под действием заданных сил, т. е. позволял произвести кинетостатиче-ский расчет механизма с учетом сил инерции.  [c.244]

Применяя общие теоремы динамики в абсолютном движении, дифференциальное уравнение вращения твердого тела вокруг неподвижной оси, дифференциальные уравнения плоского движения твердого тела, уравнения Лагранжа, часто в число рассматриваемых сил ошибочно включают силы инерции. Следует помнить, что силами инерции следует пользоваться только в случае применения а) метода кинетостати> ч, б) общего уравнения динамики, в) уравнений и общих теорем в относительном (либо переносном) движении материальной точки или материальной системы.  [c.581]

При решении ряда технических вопросов прочности приходится иметь дело с задачами динамики. Например, при расчете многих машинных частей, участ-вуюпцих в движении, приходится принимать во внимание силы инерции. И напряжения, вызываемые этими силами, иногда во много раз больше тех, которые получаются от статически действующих нагрузок. Такого рода условия мы имеем при расчете быстровращающихся барабанов и дисков паровых турбин, шатунов быстроходных машин и паровозных спарников, маховых колес и т. д. Решение таких задач может быть выполнено без особых затруднений, так как здесь деформации не играют роли мы можем при подсчете сил инерции рассматривать тела как идеально твердые и потом, присоединив найденные таким путем силы инерции к статическим нагрузкам, привести задачу динамики к задаче статики. Эти задачи достаточно полно были рассмотрены в курсе сопротивления материалов, и мы на них здесь останавливаться не будем, а перейдем к другой группе вопросов динамики — к исследованию колебаний упругих систем под действием переменных сил. Мы знаем, что при некоторых условиях амплитуда этих колебаний имеет тенденцию возрастать и может достигнуть таких пределов, когда соответствующие ей напряжения становятся опасными с точки зрения прочности материалов. Выяснению таких условий, главным образом по отношению к колебаниям призматических стержней, и будет посвящена настоящая глава. Как частные случаи рассмотрим деформации, вызываемые в стержнях внезапно приложенными силами, и явление удара.  [c.311]

Следует подчеркнуть, что с математической точки зрения уравнения (2) и (3) тождественны и дают, конечно, при решении задач одни и те же результаты. Различие здесь лишь в подходе к составлению уравнения и в его истолковании, а именно составляя уравнение в виде (3), мы подвижную систему отсчета 2 рассматриваем как неподвижную, а ту часть ускорения Ю2, которая фактически появляется вследствие движения системы 2 (т. е. ускорения —й пер и —йУкор) получаем, присоединяя к действующей силе Р так называемые силы инерции Т пер и / кор- Такой путь практически удобен, так как позволяет использовать для решения задач все, разработанные в динамике методы, в том числе, например, общие теоремы, что особенно важно при изучении относительного движения механической системы, в частности, твердого тела.  [c.25]

Условия равновесия твердого тела представляются шестью уравнениями, выполнение которых необходимо и достаточно для равновесия суммы проекций внешних сил на координатные оси должны быть равны нулю, и суммы моментов сил относительно трех координатных осей тоже должны быть равны нулю. Соответственно этому получим в динамике шесть уравнений первые три будут выражать, что суммы проекций внешних сил и сил инерции равны нулю остальные три устанавливают, что суммы моментов внешних сил и сил пнерции тоже равны нулю. Внутренние силы не входят ни в одно из этих уравнений, так как исключаются уже во время самого составления уравнений.  [c.170]

Это основное уравнение динамит для вращательного движения твердого тела. Оно устанавливает, что произведение момента инерции тела на его угловое ускорение равно сумме моментов есех сил относительно оси враи ния. Полученное уравнение совершенно аналогично основному уравнению динамики для точки  [c.351]

Как уже отмечалось, в инерциальной системе координат вып няется закон инерции. Это означает, в частности, что тело, наход щееся в начальный можнт в покое, останется пребывать в эпюм сос янии, если на него не действуют никакие силы. (Полная формул ровка закона инерции будет дана в разделе динамики.) Если аб лютно твердое тело остается в состоянии покоя при действии  [c.17]


Смотреть страницы где упоминается термин Динамика твердого тела Сила инерции твердого тела : [c.196]    [c.183]    [c.7]    [c.186]    [c.394]    [c.556]    [c.182]    [c.314]    [c.170]    [c.535]    [c.493]   
Смотреть главы в:

Техническая механика Издание 3  -> Динамика твердого тела Сила инерции твердого тела



ПОИСК



Динамика твердого тела

Динамика твердых тел

Инерция тела

Сила инерции твердого тела

Силы инерции



© 2025 Mash-xxl.info Реклама на сайте