Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Свойства вектора излучения

Свойства вектора излучения  [c.287]

В гл. 4 были рассмотрены свойства угловых коэффициентов (взаимных поверхностей). Единичный вектор излучения обладает аналогичными свойствами. При этом для каждого свойства угловых коэффициентов имеется соответствующее свойство вектора излучения. Свойства вектора излучения обозначим теми же номерами, что и аналогичные свойства угловых коэффициентов.  [c.287]

Если имеется несколько поверхностей, то вектор излучения (и единичный вектор излучения), создаваемый этими поверхностями, равен сумме векторов отдельных поверхностей. Соответственно векторное поле излучения нескольких поверхностей найдем сложением полей отдельных поверхностей. Это свойство является очевидным следствием того, что сумма интегралов выражений (9-7) и (9-12), взятых по отдельным участкам, равна интегралу по всем этим участкам, взятым вместе.  [c.288]


Возьмем две поверхности, опирающиеся на одну пространственную кривую. Единичный вектор излучения для какой-нибудь точки определяется соотношением (9-12). Переменной интегрирования является телесный угол, а сама поверхность в выражение вектора не входит. Пределы интегрирования в обоих случаях будут определяться ограничивающей пространственной кривой. Отсюда следует вывод, что единичный вектор излучения для обеих поверхностей один и тот же. Таким образом, получим следующее свойство все поверхности, опирающиеся на одну и ту же пространственную кривую, создают одинаковое поле единичного вектора излучения.  [c.289]

Указанное свойство, дает очень удобный способ графического описания поля, создаваемого невогнутыми излучающими изотермическими поверхностями в диатермической среде. Проведем в поле семейство векторных линий таким образом, чтобы все поле было разделено на п трубок, несущих каждая одинаковую величину энергии. Эти трубки будут начинаться на излучающей поверхности и оканчиваться на поверхностях, поглощающих энергию, или уходить в бесконечность. Вся энергия поля единичного вектора излучения поверхности р1 равна величине этой поверхности. Энергия каждой отдельной трубки  [c.291]

Возьмем какую-нибудь точку поля Л. Пучок лучей, получаемых этой точкой, симметричен относительно биссектрисы угла, под которым виден отрезок СО. Следовательно, вектор излучения направлен по биссектрисе угла AD. Отсюда следует, что касательная к векторной линии в любой точке делит пополам угол, яод которым виден отрезок СО. Кривая, удовлетворяющая этому свойству, есть гипербола с фокусами в точках С и О. Следовательно, векторные линии образуют семейство софокусных гипербол с фокусами в точках С пО.  [c.293]

При нескольких излучающих поверхностях каждая из них создает свое векторное поле. Согласно свойству II вектора излучения, векторное поле от всех этих поверхностей может быть получено в результате сложения векторных полей, создаваемых отдельными поверхностями. Мы не останавливаемся на способах сложения полей, отсылая интересующихся к другим источникам [172].  [c.294]

Приведенные рассуждения справедливы для многоугольника с любым числом сторон. Согласно свойству IV вектора излучения, оно справедливо также и в том случае, если основание пирамиды будет заменено какой-нибудь не плоской поверхностью.  [c.295]

Частота ы и волновой вектор к характеризуют волновые свойства монохроматического излучения, а энергия е и импульс р — корпускулярные. Второе соотношение (9.48), связывающее импульс фотона с волновым вектором, неизбежно следует из первого, связывающего энергию с частотой, если обратиться к требованию равноправия всех инерциальных систем отсчета, т. е. к принципу относительности. В самом деле, энергия (деленная на постоянный множитель с) и импульс частицы образуют четырехмерный вектор (е/с, р), а частота (деленная на с) и волновой вектор образуют четырехмерный волновой вектор (ы/с, к) монохроматической волны. При переходе от одной инерциальной системы отсчета к другой пространственные и временные компоненты 4-векторов в соответствии с преобразованиями Лоренца (8.7) перемешиваются друг с другом. Фундаментальное соотношение е=йо) между временными компонентами 4-векторов (е/с, р) и (ы/с, к) будет удовлетворять требованию релятивистской инвариантности, т. е. выполняться одновременно во всех системах отсчета, тогда и только тогда, когда такое же соотношение р=Йк имеет место и между их пространственными компонентами.  [c.468]


Для анализа нам потребуется некоторая информация о статистических свойствах вектора числа фотоотсчетов К(п). Они зависят от вида света, который участвует в интерференционных экспериментах. Например, если это излучение одномодового лазера со стабилизированной амплитудой, то каждая компонента вектора числа фотоотсчетов будет пуассоновской переменной. Если же два световых пучка поляризованы и являются тепловыми по происхождению, то фотоотсчеты подчиняются биномиальному распределению с отрицательным показателем. Предположим, что излучение тепловое, поскольку это соответствует практически всем экспериментам по формированию изображений с использованием интерферометрических данных. Предположим далее, что свет поляризован. Первой интересующей нас статистической величиной является среднее значение вектора числа фотоотсчетов. Конечно, среднее число фотоотсчетов п-го элемента фотоприемника просто пропорционально интенсивности той части иитерферограммы, которая падает на этот элемент. Таким образом,  [c.465]

Распространение электромагнитной волны в рассеивающей и поглощающей среде характеризуется трансформацией электрического вектора Е и магнитного вектора Н. Без большой потери общности можно принимать во внимание только наличие электрического вектора Е, поскольку в дальнейшем нас будут интересовать свойства электромагнитного излучения в окружающем рассеивающую частицу воздухе. При этом направление вектора Е определяет направление поляризации излучения.  [c.9]

Основные величины, характеризующие цвет, можно выбрать такими, что цвет получит свойства вектора, а это значительно упростит колориметрические расчеты. Чтобы с цветом можно было обращаться, как с вектором, за три координаты следует принять три цвета и считать их основными в рассматриваемой системе. Познакомимся прежде всего с системой RGB, в основу которой положены три цвета, соответствующие монохроматическим излучениям с длинами волн 700 546,1 и 435,8 нм. Любой другой цвет представлен как вектор в пространстве с составляющими г, д и Ь по осям координатной системы Я, О и В соответственно, т. е.  [c.112]

Несмотря на очевидное различие в способах генерирования и регистрации электромагнитных волн разного типа, можно показать, что законы распространения таких волн задаются одними и теми же дифференциальными уравнениями. Речь здесь идет об уравнениях Максвелла, в которых свойства среды учитываются введением соответствующих констант, а переход излучения из одной среды в другую определяется с помощью граничных условий для векторов напряженности электрического и магнитного полей. Использование метода, предложенного Максвеллом более 100 лет назад, позволяет построить единую теорию распространения электромагнитных волн и применить ее для описания основных свойств света. Такое феноменологическое рассмотрение  [c.9]

Проанализируем некоторые свойства термодинамически равновесного излучения в вакууме. В соответствии с (2-2) и определением вектора полного потока излучения (1-87) спектральная интенсивность равновесно, го излучения в вакууме /д должна удовлетворять уравнению  [c.61]

ЗАКОН [периодический Менделеева свойства простых тел, а также формы и свойства соединений элементов находятся в периодической зависимости от величины атомных весов элементов Планка описывает мощность излучения черного тела как функцию температуры и длины волны подобия Рейнольдса коэффициенты, необходимые для вычисления гидравлического сопротивления геометрически подобных тел, равны, если равны соответствующие числа Рейнольдса в этом случае оба потока подобны полного тока <для токов проводимости циркуляция вектора напряженности магнитного поля постоянного электрического тока вдоль замкнутого контура пропорциональна алгебраической сумме токов, охватываемых этим контуром для магнетиков циркуляция вектора магнитной индукции вдоль замкнутого контура пропорциональна алгебраической сумме токов, охватываемых этим контуром обобщенный циркуляция вектора напряженности магнитного поля постоянного электрического тока вдоль замкнутого контура пропорциональна алгебраической сумме токов, охватываемых этим контуром и током смещения ) постоянства <гранных углов в кристаллографии по величине двугранных углов в кристалле можно установить, к какой кристаллической системе и к какому классу относится данный кристалл состава каждое химическое соединение, независимо от способа его получения, имеет определенный состав ) преломления (света отношение синусов углов падения и преломления на границе двух сред равно отношению скоростей света в этих средах Снеллиуса отношение синусов углов падения и преломления луча электромагнитных волн на границе раздела двух диэлектрических сред равно относительному показателю преломления двух сред (второй среды по отношению к первой) )  [c.235]


ИЗЛУЧЕНИЕ электромагнитное [—процесс испускания электромагнитных волн, а также само переменное электромагнитное поле этих волн Вавилова — Черенкова возникает в веществе под действием гамма-излучения и проявляется Б свечении, связанном с движением свободных электронов видимое способно непосредственно вызывать зрительное ощущение в человеческом глазе при длине волн излучения от 770 до 380 нм вынужденное образуется в результате взаимодействия атомов вещества с полем при условии отдачи энергии атомов полю гамма-излучение — испускание волн возбужденных атомными ядрами при радиоактивных превращениях и ядерных реакциях, а также при распаде частиц, аннигиляции пар частица — античастица и других процессах (при длине волн в вакууме менее 0,1 нм) инфракрасное испускается нагретыми телами при длине волн в вакууме от 1 мм до 770 нм (1 нм=10 м) оптическое (свет) характеризуется длиной волны в вакууме от 10 нм до 1 мм рентгеновское возникает при взаимодействии заряженных частиц и фотонов с атомами вещества и характеризуется длинами волн в вакууме от 10—100 нм до 0,01—1 пм ультрафиолетовое является оптическим с длиной волны в вакууме от 380 до 10 нм] ИНДУКТИВНОСТЬ [характеризует магнитные свойства электрической цепи с помощью коэффициента пропорциональности между силой электрического тока, текущего в контуре, и полным магнитным потоком, пронизывающим этот контур взаимная является характеристикой магнитной связи электрических цепей, определяемой для двух контуров коэффициентом пропорциональности между силой тока в одном контуре и создаваемым этим током магнитным потоком, пронизывающим другой контур] ИНДУКЦИЯ магнитная—силовая характеристика магнитного поля, определяемая векторной величиной, модуль которой равен отношению модуля силы, действующей со стороны магнитного поля на малый элемент проводника с электрическим током, к произведению силы тока на длину проводника, расположенного перпендикулярно вектору магнитной индукции  [c.240]

При использовании рассеяния света для определения фрактальных свойств структуры интенсивность рассеянного излучения является функцией длины вектора рассеяния и определяется выражениями  [c.254]

Переносы тепла кондукцией и конвекцией характеризуются вектором, который вполне определяется в каждой точке среды локальным градиентом температуры. В противоположность этому лучистый поток в произвольном, относительно малом, объеме прозрачной среды не зависит от температуры этого объема, а определяется излучением внешних источников. Поэтому вектор, характеризующий перенос тепла излучением, определяется интегрально. Тепловое излучение, являющееся по своей природе процессом распространения электромагнитных волн, характеризуется спектром частот, который соответствует энергетическому уровню структурных частиц вещества, находящегося при рассматриваемой температуре. Интегральное тепловое излучение тел, находящихся при одинаковых температурах, определяется их атомной и молекулярной структурой, а также формой и состоянием поверхности тел, т. е. физическими свойствами среды.  [c.455]

При описании поля излучения с учетом поляризации введенных выше двух составляющих интенсивности / и h становится недостаточно. Чандрасекар [8] сформулировал уравнения переноса поляризованного излучения в общем виде, представив интенсивность излучения как четырехкомпонентный вектор с помощью четырех параметров Стокса. Другими словами, четыре величины /, Q, U, V, называемые параметрами Стокса, кш //, /г, V, V, известные под названием модифицированных параметров Стокса, дают полное описание поляризационных свойств пучка электромагнитных плоских волн. Обычно представляют интерес следующие параметры средняя по времени интенсивность, плоскость поляризации, эллиптичность и степень поляризации. Интенсивность поляризованного излучения в общем случае является четырехкомпонентным вектором  [c.17]

Идеальный лазер генерирует когерентное электромагнитное излучение, которое описывается с помощью векторов электрического и магнитного полей. Поскольку распространение этого излучения подчиняется уравнениям Максвелла, мы сначала познакомим читателя с основными свойствами электромагнитных полей.  [c.9]

Второе свойство равновесного излучения заключается в отсутствии у него поляризации для любого направления луча S и любой частоты v. Это свойство вытекает из следующих соображений. Если бы в условиях термодинамического равновесия существовала поляризация для какого-то одного направления и одной длины волны, то, поставив на пути распространения этого луча поляризационное устройство, пропускающее волны определенной поляризации, можно было бы осуществить перенос излучения в термодинамичеоки равновесной системе, что противоречит второму началу термодинамики. Следовательно, равновесное излучение должно обладать естественной поляризацией и ни одна ориентация электромагнитного вектора е должна иметь преимущества перед другими для всех частот и направлений луча.  [c.61]

Кроме ДН по амплитуде и. мощности часто используют поляризационные и фазовые ДН. Поляриаад. ДН е 0, ф) — это зависимость поляризации поля (ориентации вектора JS) от направления в дальней зоне (векторы И п И в дальней зоне лежат в плоскости, нормальной к направлению распространения). Различают линейную и эллиптич, (в частности, круговую) поляризацию (см. Поляризация волн). Если нлоскость, проходящая через е ж п (направление распространения), с течением времени не меняет своей ориентации, то поляризация поля линейная, если конец вектора е описывает в плоскости, перпендикулярной и, эллипс или окружность (по часовой стрелке относительно п — правое вращение, против — левое), то поляризация эллиптическая или круговая. В общем виде поляризац. свойства полей излучении А. удобно описывать такими энер-гетич. параметрами, как матрица когерентности или Стокса параметры. Последние имеют размерность плотности потока энергии и могут быть непосредственно измерены, что позволяет экспериментально исследовать поляризац. ДН.  [c.96]


Описанное градиентное представление для вектора излучения применимо лишь для условий, близких к равновесным. Для поглощающих сред с большими температурными градиентами выражение (20.99) следует рассматривать как грубую аппроксимацию интегрального уравнения (19.62). Степень такой аппроксимации определяется характером конфигурации излучающ0й системы, а также оптическими свойствами поглощающей среды. В физическом аспекте такое приближение основано на диффузном представлении переноса излучения по аналогии с теплопроводностью в газах. Такая аналогия,  [c.517]

Если плоскость в точке Р разделена на несколько углов, то на основании свойства аддитивности можно заключить, что вектор излучения в точке Р, лежащей на плоскости, равен сумме векторов излучения в это1[ же точке, лежащих на частях плоскости, ограниченных углами между прямыми. Отсюда получим, что каждый из этих последних векторов равен  [c.289]

Внутри пирамиды РАВСО в точке Р (рис. 154) единичный вектор излучения, согласно свойству III вектора излучения, равен нулю. Он  [c.294]

Обратимся сначала к приближениям, использовашгым при постановке модельной задачи. Сопоставим их с основными свойствами лазерного излучения, обсуждавшимися в лекции 1. Предположение о плоском фронте волны (Ак = 0) хорошо соответствует малости расходимости лазерного излучения, особенно в дифракционном предельном случае. Предположение о монохроматичности падающей волны (Д = 0) также хорошо согласуется с реа.таностью, так как, хотя лазерное излучение и квазимонохроматично, величина Д /о> всегда очень мала, особенно в одночастотном режиме генерации. Предположения о том, что волна неограничена в плоскости, нормальной к вектору к, а также о равномерном распределении интенсивности излучения по фронту волны для реальной волпы в целом совершенно не соответствуют истине — пучок лазерного излучения в поперечном сечеиии всегда пространственно ограничен, а интенсивность излучения распределена по фронту волпы ые равномерно, спадая от максимального значения на оси пучка до нуля к его периферии. Однако для проведенного выше рассмотрения, как и в любой задаче волновой оптики, достаточно того, чтобы характерный размер фронта волны и однородности интенсивности был гораздо больше длины волны это условие всегда выполняется.  [c.142]

Свойства равновесного излучения плотность лучистой энергии, ее распределение по спектру частот и направлениям распространения, а также поляризация излучения совершенно не зависят от формы и материала стенок полости. Эти свойства, подобно состоянию газа в сосуде, определяются только температурой стенок полости. Равновесное излучение однородно, т. е. его плотность одна и та же во всех точках внутри полости. Оно изотропно и неполяри-зовано все возможные направления распространения излучения представлены с одинаковой вероятностью, а направления векторов Е и В в кйждой точке пространства хаотически меняются во времени. Поскольку излучение находится в тепловом равновесии со стенками, можно говорить о температуре не только стенок, но и о температуре самого излучения, считая по определению обе температуры равными. Надо, однако, подчеркнуть, что температура равновесного излучения есть свойство самого излучения, а не стенки, С которой оно находится в тепловом равновесии. О ней имеет смысл говорить и тогда, когда вообще нет никакой стенки. В частности, например, плотность энергии равновесного излучения однозначно определяет и его температуру (см. П5).  [c.676]

Остановимся теперь на поляризационных свойствах ондуляторного излучения. В общем случае это излучение обладает эллиптической поляризацией. Чтобы это установить, введем единичные векторы ei и б2 в плоскости, перпендикулярной волновому вектору х. Для упрощения будем считать, что Х2=0, т. е. вектор х лежит в плоскости xz. Тогда в] направлен вдоль оси оу, а компоненты вектора б2 на декартовы оси координат xyz будут равны e2=( os0. О, —sin0).  [c.130]

Как известно, электромагнитная волна, являющаяся носителем энергии излучения, представляет собой распространение в среде изменяющихся во времени напряженностей электрического и магнитного полей [1]. Векторы электрической и магнитной напряженностей взаимно перпендикулярны. Скорость распространения этих поперечных волн зависит от свойств среды и от частоты. В вакууме они раотространяются со скоростью света (е л З-10 м/с).  [c.12]

Вернемся теперь к выявлению тех ограничений, которые связаны с введенными вьипе упрощениями в постановке задачи. Выше уже указывалось, что закрепление направления колебаний векторов Е и Н соответствует переходу от эллиптической к линейной поляризации электромагнитной волны. Постановка одномерной задачи [Е = плоских волн, в этом случае излучению с плоским волновым фронтом соответствует в оптике параллельный пучок лучей. Отклонимся от вопроса о том, сколь реально экспериментальное осуществление плоской волны, и исследуем подробнее ее свойства.  [c.28]

Любой объект как источник излучения возбуждает вокруг себя электромагнитное поле, классическим описание1и которого являются электрический вектор Е(г, t) к вектор магнитной шдукции Н(г, t) как функции координат г любой точки электромагнитного поля и времени /. Эти векторы описывают пространственное распределение электромагнитного поля вместе со всей совокупностью его свойств — монохроматичностью, когерентностью, поляризационными свойсгвамя [11]. Наряду с векторным представлением электромагнитного поля >1спользуется скалярное представление через декартовы компоненты соо"ветствующих векторов  [c.39]

ЗАКОН [Бера для разбавленных растворов поглощающего вещества в непоглощающем растворителе коэффициент поглощения света веществом зависит от свойств растворенного вещества, длины волны света и концентрации раствора Био для вращательной дисперсии в области достаточно длинных волн, удаленной от полос поглощения света веществом, угол вращения плоскости поляризации обратно пропорционален квадрату длины волны Био — Савара — Лапласа элементарная магнитная индукция в любой точке магнитного поля, создаваемого элементом проводника с проходящим по нему постоянным электрическим током, прямо пропорциональна силе тока в проводнике, абсолютной магнитной проницаемости, векторному произведению вектора-элемента длины проводника на модуль радиуса-вектора, проведенного из элемента проводника в данную точку и обратно пропорциональна кубу модуля-вектора Бойля — Мариотта при неизменных температуре и массе произведение численных значений давления на занимаемый объем идеальным газом постоянно Брюстера отраженный свет полностью линейно поляризован при угле падения, равному углу Брюстера, тангенс которого должен быть равен относительному показателю преломления отражающей свет среды Бугера — Ламберта интенсивность J плоской волны монохроматического света уменьшается по мере прохождения через поглощающую среду по экспоненциальному закону J=Joe , где Jo — интенсивность света на выходе из слоя среды толщиной / а — показатель поглощения среды, который зависит от химической природы и состояния поглощающей среды и от волны света Бунзеиа — Роско количество вещества, прореагировавшего в фотохимической реакции, пропорционально мощности излучения и времени освещения Бернулли в стационарном потоке сумма статического и динамического давлений остается постоянной ]  [c.231]


МЕТАЛЛОФИЗИКА — раздел физики, в котором изучаются структура и свойства металлов МЕТОД [аналогии состоит в изучении какого-либо процесса путем замены его процессом, описываемым таким же дифференциальным уравнением, как и изучаемый процесс векторных диаграмм служит для сложения нескольких гармонических колебаний путем представления их посредством векторов встречных пучков используется для увеличения доли энергии, используемой ускоренными частицами для различных ядерных реакций Дебая — Шеррера применяется при исследовании структуры монохроматических рентгеновских излучений затемненного поля служит для наблюдения частиц, когда направление наблюдения перпендикулярно к направлению освещения Лагранжа в гидродинамике состоит в том, что движение жидкости задается путем указания зависимости от времени координат всех ее частиц ин1 ерференционного контраста служит для получения изображений микроскопических объектов путем интерференции световых воли, прошедших и не прошедших через объект меченых атомов состоит в замене атомов исследуемого вещества, участвующего в каком-либо процессе, их радиоактивными изотопами моделирования — метод исследования сложных объектов, явлений или процессов на их моделях или на реальных установках с применением методов подобия теории при постановке и обработке эксперимента статистический служит для изучения свойств макроскопических систем на основе анализа, с помощью математической статистики, закономерностей теплового движения огромного числа микрочастиц, образующих эти системы совнадений в ядерной физике состоит в выделении определенной группы одновременно происходящих событий термодинамический служит для изучения свойств системы взаимодействующих тел путем анализа условий и количественных соотношений происходящих в системе превращений энергии Эйлера в гидродинамике заключаегся в задании поля скоростей жидкости для кинематического описания г чения жидкости]  [c.248]

Э. в. разл, диапазонов X характеризуются разл. способами возбуждения и регистрации. Они по-разному взаимодействуют с веществом. Процессы излучения и поглощения Э, в, от самых длинных волн до ИК-излучеиия достаточно полно описываются соотношениями электродинамики. На более высоких частотах доминируют процессы, имеющие существенно квантовую природу, а в оп-тич. диапазоне и тем более в диапазонах рентг. и у-лучей излучение и поглощение Э. в. могут быть описаны только на основе представлений о дискретности этих процессов. Во мн. случаях эл.-магн. излучение ведёт себя не как набор монохроматич. Э. в. с частотой ш и волновым вектором Л, а как поток квазичастиц—фотонов с энергией Лт и импульсом p = h[c.543]

Характерный масштаб вектора потока излучения получим при приведении уравнений диффузионного приближения (1.3) к безразмерному виду. Значение Но зависит от безразмерного параметра а = = коКо, представляющего собой отношение характерного размера сгустка к длине свободного пробега фотона, т.е. зависит от оптических свойств вещества сгустка.  [c.452]

Поляризация световых волн определяется вектором электрического поля Е(г, /) в фиксированной точке пространства г в момент времени t. Поскольку вектор электрического поля монохроматической волны Е изменяется во времени по синусоидальному закону, колебания электрического поля должны происходить с определенной частотой. Если предположить, что свет распространяется в направлении оси Z, то вектор электрического поля будет располагаться в плоскости XJ. Поскольку X- и/-составляющая вектора поля могут колебаться независимо с определенной частотой, сначала следует рассмотреть эффекты, связанные с векторным сложением этих двух осциллирующих ортогональных составляющих. Задача о сложении двух независимых ортогональных колебаний с некоторой частотой хорошо известна и полностью аналогична задаче о классическом движении двумерного гармонического осциллятора. В общем случае такой осциллятор движется по эллипсу, который отвечает не-сфазированным колебаниям х- и -составляющих. Существует, конечно, много частных случаев, имеющих больщое значение в оптике. Мы начнем с рассмотрения общих свойств излучения с эллиптической поляризацией, а затем обсудим ряд частных случаев.  [c.64]


Смотреть страницы где упоминается термин Свойства вектора излучения : [c.294]    [c.300]    [c.79]    [c.133]    [c.41]    [c.273]    [c.503]    [c.108]    [c.141]    [c.464]    [c.686]    [c.75]    [c.384]    [c.449]   
Смотреть главы в:

Лучистый теплообмен в печах и топках  -> Свойства вектора излучения



ПОИСК



Вектор излучения



© 2025 Mash-xxl.info Реклама на сайте