Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Поляризация эллиптическая

В настоящей главе описан метод получения эллиптически-поляризованного и циркулярно-поляризованного света при прохождении линейно-поляризованного света через кристаллическую пластинку. Однако это далеко не единственный способ создания указанных типов поляризации. Эллиптическая поляризация наблюдается при отражении линейно-поляризованного света от металла и при полном внутреннем отражении круговая поляризация возникает иногда при этих процессах, а также при воздействии магнитного поля на излучающие атомы (см. эффект Зеемана) и при-других явлениях. Само собой разумеется, что каким бы процессом ни было вызвано появление эллиптически- или циркулярно-поляризованного света, методы анализа его остаются теми же, как и описанные Ё настоящем параграфе.  [c.399]


Полученное выражение определяет число фотоэлектронов полезного сигнала, которые попадают на сигнальный счетчик за интервал наблюдения. В идеальном случае, когда поляризационные ошибки отсутствуют (р=1, е = 0, Аф = 0), как видно из выражения (3.35), /с равно S , т. е. все фотоэлектроны полезного сигнала попадают на сигнальный счетчик. Как уже отмечалось ранее, при наличии поляризационных ошибок сигналы, соответствуюш,ие 1 и О на входе призмы Волластона, будут иметь вместо линейной поляризации эллиптическую. В результате часть фотоэлектронов полезного сигнала будет попадать на шумовой счетчик. Количество фотоэлектронов будет определяться из выражения  [c.143]

Это — кубическое относительно уравнение, имеющее три положительных корня для любого реального упругого тела. В общем случае эти корни различны и соответствуют трем различным скоростям распространения. Значение этих скоростей зависит от двадцати одной упругой постоянной материала и направления распространения, определяемого величинами /, т и п. Волновая поверхность представляет собой три полосы, подобные двум полосам поверхности Френеля при распространении света в кристаллической среде. Можно показать [70], что когда три скорости распространения различны, уравнения (2.59) означают, что направления колебаний, соответствующие трем скоростям, взаимно перпендикулярны. Когда две скорости распространения совпадают, соответствующие им колебания образуют простое волновое движение, происходящее в плоскости, перпендикулярной направлению третьего колебания. Когда это имеет место, совместное движение, как и в случае света, может иметь форму плоской поляризации, эллиптической поляризации или круговой поляризации— в зависимости от фазовых соотношений двух компонент колебания и их амплитуд.  [c.46]

Наиболее общим случаем упорядоченной структуры поляризованного света является эллиптическая поляризация. Эллиптически поляризованный свет возникает каждый раз, когда вдоль некоторого направления в пространстве распространяются два луча, поляризованные в двух взаимно перпендикулярных плоскостях и имеющие некоторую разность фаз.  [c.207]

Продольные колебания вводились под различными углами падения а (фиг. 18) из органического стекла через масляную пленку в металл. Преломленный луч — сдвиговые колебания принимались кварцевой пластиной У-среза, причем вращением этой пластины определялось отношение интенсивности колебаний в различных плоскостях. Оказалось, что максимальная степень поляризации (эллиптической) сдвиговых УЗК наблюдается при вполне определенном значении угла падения. Эта закономерность весьма близка к известному в оптике закону Брюстера. Угол падения а, при котором сдвиговые УЗК поляризованы в максимальной степени, может быть вычислен, как это следует из закона Брюстера, по формуле  [c.71]


Рисунок 3.3 иллюстрирует еще одну заманчивую возможность практического использования поляризационных эффектов при лазерном зондировании аэрозолей. В левой части этого рисунка изображены вертикальные профили компонент Q, и м V вектор-параметра Стокса и угловой позиции доминирующего положения плоскости поляризации эллиптически поляризованного излучения х эхо-сигнала для интервала высот 4.. . 26 км. В правой части ри-  [c.68]

Общий случай поперечной поляризации, эллиптическая поляризация. В общем случае для фиксированного г поперечно-поляризованное колебание имеет вид  [c.359]

Ответ поляризация эллиптическая с левым вращением вектора Е большая ось эллипса образует угол 45° с осью г, — УЪ.  [c.58]

Ответ поляризация эллиптическая с правым вращением вектора Е большая ось эллипса совпадает с осью х k = 2.  [c.58]

Ответ поляризация эллиптическая о соотношением осей 1,007 1,045 1,101 1,286.  [c.71]

Для закритических углов падения p> " отраженная поперечная волна имеет эллиптическую поляризацию. Эллиптически поляризованной называют поперечную волну, в которой траектория каждой колеблющейся частицы за период колебаний имеет вид эллипса, лежащего в плоскости, перпендикулярной направлению распространения волны. Такая поляризация волны возникает, когда колебания частиц в двух компонентах поперечной волны со взаимно перпендикулярным направлением колебаний сдвинуты по фазе. Именно такое обстоятельство возникает вследствие изменения фазы отражения вертикально поляризованной волны от свободной границы при условии > ".  [c.43]

Поляризация света при отражении и преломлении на границе раздела диэлектрик — металл. Так как для металлов п является комплексной величиной, то, согласно формулам Френеля, амплитуды как преломленной, так и отраженной волны окажутся комплексными. Это означает, что между компонентами отраженной (а также и преломленной) волны и падающей возникает разность фаз. Эта разность фаз для s- и р-компонент не является одинаковой, поэтому между S- и р-компонентами отраженной (а также преломленной) волны возникает определенная разность фаз, приведшая к эллиптической поляризации отраженной от поверхности металла волны. Как известно из раздела механики курса общей физики , сложение двух взаимно перпендикулярных колебаний с отличной от нуля разностью фаз между ними в общем случае приводит к так называемой эллиптической поляризации , В эллиптически поляризован-  [c.63]

Более подробна речь об эллиптической поляризации будет идти в 7 гл. IX.  [c.63]

Если же вектор Ё D падающем линейно-поляризованном свете не совпадает ни с одним из вышеуказанных двух взаимно перпендикулярных направлений, то по мере прохождения волны в анизотропной среде должно происходить превращение линейной поляризации в эллиптическую с изменяющимися параметрами эллипса. Чтобы  [c.253]

Если различие в скорости распространения лучей, поляризованных по кругу влево и вправо, приводит к вращению плоскости поляризации, то различие коэффициентов поглощения этих же лучей приводит к эллиптической поляризации. Это связано с тем, что поляризованные по кругу компоненты с амплитудами = -t o/2 и = = /о2 при прохождении слоя вещества поглощаются по-разному, в результате чего их амплитуды при выходе из вещества становятся неодинаковыми. Сложение двух круговых колебаний разных амплитуд дает эллиптически-поляризованный свет, причем направление вращения по эллипсу будет совпадать с направлением вращения поляризованной по кругу компоненты, которая поглощается в меньшей степени. Круговой дихроизм характеризуется эллиптичностью, т. е. отношением полуосей эллипса. Тот факт, что эллиптичность не зависит от различия скоростей распространения левой и правой волн, а угол поворота плоскости поляризации — от вели-  [c.299]

Амплитуда может быть комплексной (физический смысл этого связан с эллиптической поляризацией волны), и, кроме того, Е — величина векторная. Поэтому в общем случае нужно записать выражение для плоской монохроматической волны в виде  [c.29]

Соотношение (1.24), описывающее монохроматическую волну, служит одним из возможных решений волнового уравнения, и такая волна обязательно должна быть поляризована (в общем случае эллиптически). Итак, мы пришли к чрезвычайно важному утверждению, глубокий смысл которого заключается в том, что поляризация монохроматической волны является прямым следствием уравнений Максвелла.  [c.29]


Покажем, что при внутреннем отражении происходит изменение поляризации излучения — линейно поляризованная волна становится эллиптически поляризованной.  [c.98]

Следует учитывать, что если угол <р строго равен нулю, то никакой эллиптической поляризации в отраженной волне не будет.  [c.103]

Схема измерения эллиптической поляризации при помоп и клина  [c.116]

Для преобразования эллиптически поляризованного света в линейно поляризованный ( а также для превращения линейной поляризации в эллиптическую с любым заданным значением ft) можно применять кристаллический клин, определенным образом вырезанный относительно его оптической оси (рис.3.4). Его использование позволяет скомпенсировать любую разность фаз. Поместив этот клин между двумя поляризаторами и осветив его точечным источником света, получаем на выходе систему темных  [c.117]

На базе введенных понятий докажем возникновение эллиптической поляризации у преломленной волны в кристалле, опреде-  [c.128]

Эллипс поляризации — проекция траектории, которую описывает конец вектора Е на плоскость, перпендикулярную лучу (рис. 8.3), В общем случае проекционная картина имеет вид эллипса с правым или левым направлением вращения вектора Е во времени, по может вырождаться в окружность и прямую, В связи с этим различают поляризации эллиптическую, круговую или циркулярную и лииейную.  [c.185]

Кроме ДН по амплитуде и. мощности часто используют поляризационные и фазовые ДН. Поляриаад. ДН е 0, ф) — это зависимость поляризации поля (ориентации вектора JS) от направления в дальней зоне (векторы И п И в дальней зоне лежат в плоскости, нормальной к направлению распространения). Различают линейную и эллиптич, (в частности, круговую) поляризацию (см. Поляризация волн). Если нлоскость, проходящая через е ж п (направление распространения), с течением времени не меняет своей ориентации, то поляризация поля линейная, если конец вектора е описывает в плоскости, перпендикулярной и, эллипс или окружность (по часовой стрелке относительно п — правое вращение, против — левое), то поляризация эллиптическая или круговая. В общем виде поляризац. свойства полей излучении А. удобно описывать такими энер-гетич. параметрами, как матрица когерентности или Стокса параметры. Последние имеют размерность плотности потока энергии и могут быть непосредственно измерены, что позволяет экспериментально исследовать поляризац. ДН.  [c.96]

Пусть электрический вектор в падающем свете колеблется вдоль ОР. Разложим его на два колебания ОВ и 0D, распространяющихся с разными скоростями и, следовательно, приобретающими разность фаз. Как это нам уже известно из предыдущей главы, сложение двух взаимно перпендикулярных колебаний приводит к эллиптической поляризации, форма и направление вращения которой определяются разностью фаз слагаемых колебаний. Следовательно, разложение колебания вдоль ОР на взаимно перпендикулярные составляющие вдоль 0D п ОВ приводит к прс1зращению плоского колебания вдоль ОР в эллиптическое с нарастающей по мере прохождения в среде разностью ф аз между соответствующими составляющими (рис. 10.6, II и ///).  [c.254]

Эллиптическая поляризация Конец вектора Б описывает ЭЛЛИПС I, конец мктора Н описывает эллипс 2  [c.25]

Учтем также, что поворот вектора на тс/2 эквивалентен умножению его модуля на г. Следовательно, наличие комплексного отношения составляющих Еу/Ех у волны свидетельствует об эллиптической поляризации излучения. Преобразуя систему четырех уравнений (1.17), в которую входят проекции Е и И, в систему (1.18), получающуюся при закреплении направления колебаний этих векторов, мы переходим от эллиптической поляризации к линейной Е =- Н -= Ну. Соответствующая экспериментальная процедура с использованием пластинки к/4 описана в гл. 3.  [c.26]

Вернемся теперь к выявлению тех ограничений, которые связаны с введенными вьипе упрощениями в постановке задачи. Выше уже указывалось, что закрепление направления колебаний векторов Е и Н соответствует переходу от эллиптической к линейной поляризации электромагнитной волны. Постановка одномерной задачи [Е = плоских волн, в этом случае излучению с плоским волновым фронтом соответствует в оптике параллельный пучок лучей. Отклонимся от вопроса о том, сколь реально экспериментальное осуществление плоской волны, и исследуем подробнее ее свойства.  [c.28]

Поляризация излучения является третьей основной характеристикой монохроматич( ской волны. Наиболее простой случай. нинейной поляризации имеет место в УКВ-области, и его можно искусственно создать и в оптическом диапазоне. Существует множество различных типов оптических поляризаторов — устройств, на выходе которых получа( тся линейно поляризованный спет (кристаллы исландского игиата или кварца, призма Николя и различные другие приспособле шя). ( помощью таких уст ройств можно не только поляризовать излучение, но и проверить, характеризуется ли неизвестная радиация линейной поляриза-иией.Методика подобных исследований ясна из рис. 1.12, где показаны две взаимные ориентации поляризатора и анализатора, при которых свет проходит целиком или нацело задерживается. Метод исследования эллиптически поляризованного света  [c.36]

При общем изучении явления поляризации необходимо объяснить, как возникает характеризующейся осевой симметрией обычный неполяризованный свет. Решением уравнений Максвелла служит строго монохроматическая волна, и потому она обязательно должна быть поляризована (в общем случае эллиптически). Лишь обрыв колебаний (нарушение монохроматичности волны) приводит к исчезновению данной поляризации излучения. Именно так обстоит дело в оптике, где в среднем через каждые 10 с происходит затухание колебаний. Если бы поляризацию исследова.пи безынерционной аппаратурой, то можно было бы обнаружить смену раз.личных. эллипсов через столь малые промежутки времени. Но создать такую аппаратуру трудно, любое приспособление, пригодное для исследования поляризации, неизбежно инерционно, и, наблюдая ( стсственный свет, мы усредняем изменение его поляризации за промежуток времени, значительно превышаюгций 10 с. Tate и возникает осевая симметрия колебаний вектора Е (неполяризованный свет), которая и наблюдается на опыте.  [c.37]


Применяя какое-либо поляризационное устройство, можно выделить из неполяризованного света колебания вполне определенного направления и затем оперировать ( таким линейно поляризованным излучением. Из 1.1 следует, что можно рассматривать неполяризованный свет как сумму двух взаимно перпендикулярных линейно поляризованных колебаний, у которых сдвиг фаз 6 за время наблюдения хаотически меняется. Эллиптическая поляризация, излучения возникает в тех случаях, когда этот сдвиг фаз Л искусственно м(лж,но сделать постоянным во времени. При 6 -- О эллиптическая поляризация вырождается в линейную. В 5.2 мы вернемся к рассмотрению этих явлений, которые могут быть хорошо проил-июстрированы на опыте.  [c.37]

Ниже показано, что основные оптические свойства метЕшлов могут быть рассмотрены в рамках развиваемой здесь феноменологической теории. Но прежде всего выясним специфичность этой задачи. Большинство металлов, как известно, характеризуется высоким коэффициентом отражения. Кроме того, даже в тонком слое металла излучение очень сильно поглощается. Опыт показывает также, что при отражении электромагнитной волны от металлической поверхности наблюдается эллиптическая поляризация излучения, отсутствующая лишь при нормальном падении.  [c.100]

Комплексное значение ф2 приведет к тому, что комп.тексными окажутся амплитуды отраженной и преломленной волн в формулах Френеля, что, как известно, связано с эллиптической поляризацией излучения. Следовательно, если на металл падает линейно поляризованная волна, то как отраженная, так и преломленная волны будут эллиптически поляризованы. Исследование преломленной волны затруднительно, так как она нацело поглощается в очень тонком слое металла, и поэтому обычно экспериментально изучают волну, отраженную от металла. Этот метод, предложенный в начале XX и. Друде, служит основным способом определения оптических характеристик металла.  [c.102]

Рассмотрим несколько подробнее условия получения круговой поляризации, которая, как известно, является частным случаем эллиптической поляризации. Для возникновения циркулярно поляризованного света разность фаз 6 должна б дть равной (2k + 1)п/2. Но, кроме того, должны быть одинаковыми амплитуды двух взаимно перпендикулярных колебаний. Это достигается при определенной ориентации вектора Е в падающей волне относительно оптической оси кристалла. РГетрудно сообразить, что если угол между Е и плоскостью главного сечения равен 45°, то амплитуды обыкновенной и необыкновенной волн одинаковы и при 8 = (2/е + 1)п/2 из кристалла выйдет волна, поляризованная по кругу. Именно так работает пластинка в четверть длины волны (рис.3.3), которую можно использовать как для превращения линейно поляризованной волны в волну, поляризованную  [c.116]

Очень важно понять, что все эти эффекты наблюдаются при освещении пластинки линейно поляризованным светом. Если освещать ее естественным (неполяризованным) светом, то, конечно, эллиптической поляризации на выходе не будет. Это совершенно ясно, так как естественный свет представляет собой излучение, в котором совершенно не скоррелирована разность фаз между взаимно перпендикулярными колебаниями. Поэтому внесение дополнительной разности фаз S ничего не может изменить в его характеристике.  [c.117]

Анизотропия при деформациях. Если подвергну ь какое-либо прозрачное тело сжатию (или растяжению), то в результате такого воздействия образуется своеобразный квазикристалл , оптическая ось которого проходит в направлении сжатия ( растяжения). Симметрия всех свойств вещества в плоскости, перпендикулярной направлению сжатия, совершенно очевидна, поэтому в данном случае имеет смысл говорить о возникновении одноосного квазикристалла. Это явление легко наблюдать на опыте, схема которого приведена на рис. 3.8. Через тело, подвергшееся сжатию, пропускают свет в направлении, перпендикулярном образовавшейся оптической оси следовательно, в нем должна возникнуть эллиптическая поляризация.  [c.120]

Анизотропия в электрическом поле. Возникновение анизотропии в электрическом поле было обнаружено Керром в 1875 г. и с тех пор широко используется в технике эксперимента. В настоящее время явление Керра хорошо исследовано как экспериментально, так и теоретически. Это оказалось возможным благодаря тому, что эффект наблюдается в веществах, находящихся в жидком и даже газообразном состоянии, а их изучение несравненно проще изучения твердого тела. Схема опыта относительно проста (рис. 3.10). Между двумя скрещенными поляризаторами Pi и / 2 располагают плоский конденсатор. Между пластинами конденсатора помещают кювету с жидким нитробензолом — веществом, в котором изучаемый эффект весьма велик. При включении напряжения происходит поляризация молекул нитробензола и их выстраивание. Так создается анизотропия вещества с преимущественным направлением (оптической осью кназикрис-талла) вдоль вектора напряженности электрического поля. Так же как и при механической деформации, излучение становится эллиптически поляризованным и частично проходит через второй поляризатор, скрещенный с первым, т.е. установленный так, чтобы не пропускать линейно поляризованный свет. Опыт дает Ап = н,, — п = КЕ , где К — некая константа, как правило, положительная. Однако для некоторых веществ К оказывается меньше О (это значит, что /г > п , т.е. образуется отрицательный квазикристалл).  [c.122]


Смотреть страницы где упоминается термин Поляризация эллиптическая : [c.31]    [c.529]    [c.149]    [c.152]    [c.22]    [c.65]    [c.239]    [c.7]    [c.25]    [c.26]    [c.26]    [c.103]    [c.116]    [c.129]   
Оптика (1976) -- [ c.49 , c.379 , c.390 ]

Оптический метод исследования напряжений (1936) -- [ c.71 ]

Физическое металловедение Вып II (1968) -- [ c.360 ]

Оптика (1985) -- [ c.38 ]

Атмосферная оптика Т.4 (1987) -- [ c.16 , c.142 , c.222 ]

Распространение и рассеяние волн в случайно-неоднородных средах Т.1 (0) -- [ c.40 ]

Волны (0) -- [ c.359 , c.360 ]

Теория рассеяния волн и частиц (1969) -- [ c.18 ]



ПОИСК



485 эллиптические

Алфавитный уКс эллиптическая поляризация

Анализ света эллиптической и круговой поляризаций

Исследование отраженной волны. Эллиптическая поляризация

Поляризация

Поляризация света круговая эллиптическая

Поляризация света линейпая, круговая, эллиптическая

Поляризация света эллиптическая



© 2025 Mash-xxl.info Реклама на сайте