Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Особые решения случае плоской задачи

Особо следует упомянуть приближенные решения плоской задачи теории упругости способом замены дифференциальных уравнений метода сил или метода перемещений уравнениями в конечных разностях. В этом случае рассматриваемое тело заменяется соответствующей пространственной решеткой и для каждого телесного угла имеют место три уравнения в конечных разностях (см. главу IV).  [c.66]


При рассмотрении распространения излучения как электромагнитной волны обычно особое внимание уделяют плоским волнам, главным образом из-за простоты решения уравнений Максвелла в этом случае. Основная задача проводимого ниже анализа решения уравнений Максвелла состоит в том, чтобы показать, каким образом распространение излучения может быть представлено в виде движущихся плоских волн и как результаты этого подхода могут быть использованы при изучении процесса отражения излучения от поверхностей. Ниже будет рассмотрено распространение плоских волн как в идеальном диэлектрике (т. е. в непроводящей среде), так и в проводящей  [c.10]

Bee соотношения (1.12) содержат высшие приближения в аналогичной форме, поэтому общее решение для случая любого приближения представляется как сумма общего решения (3.3) плюс частное решение неоднородного уравнения. Поскольку каждое предыдущее решение может быть найдено методом разделения переменных, нахождение частного решения уравнения Эйлера с правой частью, к которому приводится задача нахождения последующих приближений, не представляет особого труда и может быть выполнено известными приемами в зависимости от конкретного вида правой части. В случае плоского напряженного состояния из (3.1) и (1.12) следует  [c.197]

В случае одной сосредоточенной силы, нормальной к границе полупространства оно может быть получено наложением особых решений, соответствуюш.их, во-первых, действию сосредоточенной силы в неограниченной упругой среде, во-вторых, линии центров расширения (элементарное решение второго типа). Решение для одной сосредоточенной силы далее легко обобщается с помощью принципа наложения на случай произвольной, распределённой по границе нормальной к ней нагрузки. Второй путь решения заключается в сведении рассматриваемой задачи к некоторой краевой задаче теории потенциала — оказывается (это можно получить, исходя из общего решения в форме П. Ф. Папковича), что задача теории упругости о разыскании напряжённого состояния в полупространстве при заданном значении нормального напряжения на границе полупространства и при отсутствии на ней касательных напряжений и сводится к разысканию одной гармонической функции, обладающей всеми характеристическими свойствами потенциала простого слоя, распределённого по плоской области загружения с плотностью, пропорциональной интенсивности нагрузки.  [c.90]


Таким образом, формулы Г. Герца для плоской задачи (для линейного контакта) могут быть получены из решения для особых случаев контакта цилиндров.  [c.294]

Поэтому при решении таких задач эту силу разлагают на две составляющие, направленные по координатным осям. Из задач этой группы следует особо отметить важный частный случай, а именно система состоит из двух тел с тремя шарнирами, из которых два являются неподвижными опорными шарнирами, а третий соединяет эти два тела между собой, например, в случае трехшарнирной арки (рис. 44). Рхли трехшарнирная арка находится в равновесии под действием плоской системы сил, то можно составить всего шесть уравнений  [c.65]

Система линейных уравнений для определения скоростей и ускорений. В отличие от задачи аналитического определения положений звеньев, которая в обш,ем случае сводится к решению системы нелинейных уравнений, задача об определении скоростей и ускорений любых точек на звеньях плоских и пространственных механизмов всегда может быть приведена к решению системы линейных уравнений и потому не представляет особой сложности. Составление этих уравнений поясним на примере шарнирного четырехзвенника (см. рис. 14).  [c.33]

В этой главе излагается общий подход к решению проблемы особых точек, основанный на понятии корректной краевой задачи и теореме об однородных решениях Р ]. В сочетании с простейшими инвариантно-групповыми соображениями предлагаемый подход позволил достаточно полно изучить наиболее интересные случаи в плоской статической задаче теории упругости, а также случай цилиндрической точки.  [c.52]

Как известно (см. первую главу), основные граничные задачи плоской теории упругости для тел с разрезами сводятся к системе сингулярных интегральных уравнений по замкнутым (контуры отверстий и внешняя граница) и разомкнутым (разрезы) контурам. В некоторых частных случаях граничных контуров 70, 95] (круговая граница, бесконечная прямолинейная граница, система коллинеарных разрезов) возможно понижение порядка этой системы уравнений, что позволяет более эффективно находить ее численное решение. В данной главе (см. также работы 59, 60]) получены модифицированные таким образом сингулярные интегральные уравнения, когда в рассматриваемой области имеется прямолинейная конечная или полубесконечная треш,ина. (Случай конечной прямолинейной треш,ины рассмотрен в работах [58, 104].) Указанный подход, когда граничное условие на прямолинейной треш,ине выполняется тождественно, позволяет не только эффективнее находить численное решение задачи, но и сравнительно просто изучать действие сосредоточенных сил и разрывных нагрузок на берегах трещины, а также рассматривать краевые разрезы. Решение задач для областей с прямолинейной тре-Ш.ИНОЙ представляет особый интерес в механике разрушения (определение /С-тарировочных зависимостей для опытных образцов с трещинами, развитие трещин около концентраторов напряжений).  [c.102]

Исследованию течений газа с ударными волнами посвящены многочисленные работы, относящиеся главным образом к течениям, зависящим от двух переменных (одномерные неустановившиеся движения, плоские и осесимметричные сверхзвуковые установившиеся течения). Основным средством расчета таких течений при наличии ударных волн умеренной и большой интенсивности является метод характеристик и его упрощенные модификации, связанные часто с трудно контролируемыми допущениями. Поэтому при оценке точности приближенных методов особая роль принадлежит задачам об автомодельных движениях, решение которых в случае двух независимых переменных удается получить с желаемой степенью точности путем интегрирования обыкновенных дифференциальных уравнений. В ряде работ изучены неустановившиеся автомодельные движения, которые возникают при расширении в газе плоского, цилиндрического и сферического поршня с постоянной скоростью [1, 2] и со скоростью, меняющейся со временем по степенному закону, но при нулевом начальном давлении газа [3], течения, образующиеся нри точечном взрыве в среде с нулевым начальным давлением [4, 5], и некоторые другие. При установившемся обтекании сверхзвуковым потоком изучены автомодельные течения, возникающие при обтекании клина и круглого конуса [6, 7.  [c.261]


Это правило эквивалентно закону плоских сечений и носит название нестационарной аналогии. Хотя нестационарная аналогия в общем случае и не дает особых преимуществ при точном численном решении уравнений, так как число независимых переменных сохраняется, а уменьшение уравнений на одно не столь принципиально она играет большую роль в установлении закономерностей физического характера, а в ряде случаев позволяет понизить размерность задачи, т. е. уменьшить число независимых переменных. Эти случаи будут рассмотрены ниже (см. гл. 9).  [c.215]

Таким образом, мы имеем полную ясность о структуре решений задач I, повсюду, кроме окрестностей линий (в двумерном случае—точек) где происходит смена граничных условий. Между тем, во многих случаях именно поведение решений в этих окрестностях представляет наибольший интерес. Так, например, все теории разрушения и теории развития трещин в материалах используют в той или иной мере информацию о поведении решений в окрестности этих особых множеств. Кроме того, поведение решений в окрестности особых множеств дает важные соображения для конструирования приближенных методов решения для характеристики классов корректности решений смешанных задач. Нужно-сказать, что проблема полного описания решений в окрестности особых множеств границы еще не получила полного разрешения. Лишь в плоском случае мы имеем здесь ряд результатов [119]. Их полная формулировка достаточно сложна, и мы приведем лишь некоторые из них.  [c.94]

Сначала изучим методы решения этого уравнения в плоской геометрии, а затем рассмотрим более обш,ие случаи, причем особое внимание уделим диффузионному и Р -приближениям. Наконец, приведем некоторые наиболее специфичные задачи для плоской и цилиндрической геометрий.  [c.101]

Оболочки. Если определены матрицы масс для плоских и изгибных движений некоторого элемента, то может быть найдена матрица масс, отнесенная к общей координатной системе. Правила преобразований в этом случае, очевидно, точно такие же, как для сил. Основные этапы получения матрицы масс для каждого элемента в общих координатах и составление матрицы масс для ансамбля аналогичны подобным операциям для матриц жесткости (см. гл. 11). Поэтому в принципе решение задач о колебаниях оболочек не представляет особых трудностей.  [c.352]

Для решения трехмерных статических задач теории упругости мы не располагаем таким эффективным аналитическим аппаратом, как в плоской теории упругости. Здесь мы рассмотрим такие частные решения ура1внения равновесия в случае отсутствия массовых сил, для которых вблизи определенных точек перемещение неограниченно возрастает. Эти точки должны лежать вне тела или содержаться в особых полостях внутри него. Следует отметить, что наиболее простой тип изолированной особой точки представляет С0160Ю точка приложения сосредоточенной силы.  [c.223]

В ПЛОСКОМ случае в отличие от сферического и цилиндриче- [Joro, кроме задачи о сжатии газа поршнем, возможны также задачи о выдвигании поршня из газа. Этой задаче соответствует особое решение системы уравнений (1.2) при v = 1, имею-ntee вид  [c.182]

Особый класс составляют оболочки, у которых один размер намного превышает два других,— тонкостенные стержни. Работа таких стержней уже не согласуется с гипотезой Бернулли, их плоские сечения после деформации кручения перестают быть плоскими, депланируют . С. П. Тимошенко показал, что в полке скручиваемого двутавра возникают изгибные напряжения, которые не затухают при удалении от мест закрепления. Аналогичный факт для швеллера установил К. Вебер. Подробное рассмотрение всех особенностей кручения и изгиба тонкостенных стержней с решением ряда практических задач лишь много позже дал В. 3. Власов , который показал, что депланации сечения определяются так называемым законом сек-ториальных площадей. При этом граничные условия на концах стержней заставляют различать случаи свободного кручения, когда депланации не-ограничены, и стесненного кручения, при котором возникают дополнительные нормальные напряжения. Это накладывает особенности на рассмотрение статически неопределимых конструкций из таких стержней.  [c.257]

Это ур-ие представляет в случае плоской деформации решение любой задачи независимо от величины и направления действующих сил и упругих свойств тела (однако но всо1 да удобное) д. б. выполнены только в каждом случае особые пограничные условия (24). Объемной силой обычно пренебрегают. Весь вопрос разрешения частной задачи сводится к выбору под-  [c.209]

Этот результат представляет собой случай изгиба пластинок, исиользоваиный впоследствии А. Надаи для экспериментального подтверждения приближенной теории изгиба ), предложенной Кирхгоффом. О другой интересной краевой задаче упоминается н Натуральной философии Томсона—Тэйта. Здесь сообщается по этому поводу До сих пор, к сожалению, математикам не удалось решить, а возможно, что они даже и не пытались решать, прекрасную задачу об изгибании широкой, весьма тонкой полосы (подобной, например, часовой пружине) в круговое кольцо ). Лэмб исследовал антикластический изгиб по краю тонкой полосы ) и достиг большого прогресса в решении задачи о балке ). Рассматривая бесконечно длинную балку узкого прямоугольного сечения, нагруженную через равные интервалы равными сосредоточенными силами, действующими поочередно вверх и вниз, он упростил решение двумерной задачи а для некоторых случаев получил уравнения кривых прогиба. Таким путем было показано, что элементарная теория изгиба Бернулли достаточно точна, если высота сечения балки мала в сравнении с ее длиной. При этом было также показано, что поправка на поперечную силу, даваемая элементарной теорией Рэнкина и Грасхофа, несколько преувеличена и должна быть снижена до 75% от рекомендуемого этой теорией значения. Надлежит упомянуть также и о труде Лэмба, посвященном теории колебаний упругих сфер ) и распространению упругих волн по поверхности полубесконечного тела ), а также в теле, ограниченном двумя плоскими гранями ). Он изложил также и теорию колебаний естественно искривленного стержня ). Особый интерес для инженеров представляет его и Р. В. Саусвелла трактовка колебаний круглого диска ).  [c.407]


Среди приближенных методов решения задач математической физики особую роль играет теория возмуш,ений, позволяющая построить асимптотические разложения при малых и больших значениях тех или иных характерных параметров. Применению такого подхода к контактным задачам теории упругости для изотропной полосы и изотропного слоя был посвящен специальный параграф в монографии [7]. При этом в качестве малых и больших параметров принимались, как правило, относительные геометрические размеры штампа (отношение ширины штампа к ширине полосы (слоя) или обратная величина). Между тем, в случае анизотропного и, в частности, ортотропного материала появляется еще одна возможность. Обычно некоторые жесткости композитов, моделируемых анизотропными однородными средами, отличаются по порядку величины, и, следовательно, их отношения могут рассматриваться как малые параметры. В последние десятилетия был развит асимптотический метод, основанный на построении разложения по таким параметрам. Этот метод отражен, помимо статей [1, 3, 5], в монографиях [4] и [6]. Первое его применение к контактным задачам содержится в статье Л. И. Маневича и А. В. Павленко [5], где рассмотрено вдавливание в упругую ортотропную полосу жестких штампов при наличии сил трения. В этой работе было показано, что использование малого параметра, характеризующего отношение жесткостей ортотропной среды, позволяет свести смешанную краевую задачу плоской теории упругости к последовательно решаемым задачам теории потенциала. Статья С. Г. Коблика и Л. И. Маневича [3] посвящена контактной задаче для ортотропной полосы при наличии области контакта зон сцепления и скольжения. В этой сложной задаче предложенный метод оказался особенно эффективным бьши получены явные аналитические выражения для нормальных и касательных напряжений в обеих областях, а также для заранее неизвестной границы между этими областями. В работе Н. И. Воробьевой,  [c.55]

При численном решении задачи несимметричного обтекания плоского контура методом интегральных соотношений возникают затруднения. В симметричной задаче граничными условиями для ЗN дифференциальных уравнений служат 2N условий симметрии течения на оси и N условий регулярности решения при прохождении особых точек. При несимметричном обтекании решение должно удовлетворять N условиям регулярности с каждой стороны тела, что дает 2N условий. Однако 2N условий симметрии при этом отсутствуют, что требует в общем случае наложения дополнительно N условий для определения решения. До настоящего времени нет способа выбора этих условий для N > 1. При ТУ = 1 задача о несимметричном обтекании плоской пластины решена А. М. Базжи-ным (1963). А. Н. Минайлос (1964) применил метод интегральных соотношений для расчета " сверхзвуков ого обтекания затупленного тела вращения под углом атаки. При этом он использовал осесимметричную систему координат типа применяющейся в теории пограничного слоя. Записав уравнения в дивергентной форме, А. Н. Минайлос аппроксимирует входящие в эти уравнения величины, как это делается ]ц в стандартном методе О. М. Белоцерковского, полиномами по координате, нормальной телу азимутальные же распределения параметров аппроксимируются рядами Фурье по полярному углу. В рядах Фурье, кроме постоянного члена, сохраняется лишь еще один член. При этом (ср. работу В. В. Сычева,  [c.174]

Лучевая асимптотика ). Фронт распространяющейся волны представляет собой поверхность разрыва для производных некоторого порядка от смещений. В силу этого в окрестности фронта изменение поля смещений в направлении нормали к фронту значительно более интенсивно, чем такое же изменение вдоль фронта. Это позволяет рассматривать окрестность каждой точки фронта как локально-плоскую волну. На этой идее построен асимптотический метод изучения окрестности фронтов (для неподвижного наблюдателя — окрестности первого вступления некоторой волны). Этот метод давно известен в акустике и оптике. Перенос его в теорию упругости был впервые осуществлен в работе М. Л. Левина и С. М. Рытова (1956). В дальнейшем он подвергался разработке и использовался как средство приближенного решения задач отражения и преломления. Описание поля в окрестности фронта можно строить с разной степенью точности в прикладных задачах обычно пользуются первым приближением, но есть случаи, когда оно принципиально недостаточна (Г. С. Подъяпольский, 1959). Лучевой подход, с одной стороны, обладает большой общностью, например, он применим без особых осложнений к неоднородным средам. С другой стороны, есть исключительные ситуации, где он не работает или требует существенной перестройки, например в окрестности начальных точек головных волн (и вообще точек пересечения фронтов), в окрестности каустики и др. (В. М. Бабич, 1961 Ю. Л. Газарян, 1961 Б. Т. Яновская, 1964).  [c.297]


Смотреть страницы где упоминается термин Особые решения случае плоской задачи : [c.182]    [c.338]    [c.129]   
Математическая теория упругости (1935) -- [ c.219 , c.224 , c.225 ]



ПОИСК



М тох решения плоской задачи

Особые

Особые случаи

Плоская задача

Решение для случая

Решения плоские



© 2025 Mash-xxl.info Реклама на сайте