Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Системы частично распределенные

Как в однородных, так и в неоднородных системах функции распределения более чем одной частицы позволяют ввести фундаментальное представление о корреляциях. Рассмотрим s-частичное распределение в фиксированный момент времени. Может оказаться, что эта функция имеет вид произведения одночастичных функций  [c.103]

Если радиационное время жизни делается сравнимым со временем релаксации, то в системе квазиравновесное распределение полностью не устанавливается. В этом случае излучение частично происходит из нескольких возбуждённых состояний. Такое излучение называют горячей люминесценцией.  [c.18]


Частично распределенные системы управления.  [c.444]

Системы управления, относящиеся к типам 2 и 3 в принятой классификации, представляют собой две различные формы распределенных систем управления, в которых управляющие устройства располагаются в непосредственной близости от датчиков и исполнительных механизмов. На рис. 18.6 изображена система управления, относящаяся к типу 2 и называемая частично распределенной системой управления. Конфигурация локальной сети в таких системах управления чаще всего представляет собой звезду, но в отличие от централизованных систем управляющие устройства, объединенные в периферийные блоки управления, располагаются вблизи соответствующих контуров управления. Для свя-  [c.446]

Рис. 18.6. Архитектура частично распределенной системы управления (тип 2). Рис. 18.6. Архитектура частично распределенной системы управления (тип 2).
Полностью распределенные системы управления являются как бы напоминанием о тех первых распределенных системах, которые существовали задолго до централизованных систем управления. Такая архитектура системы управления в сочетании с возможностями современных ЭВМ дает преимущества, которые невозможно было реализовать в существовавших ранее системах. Структура полностью распределенной системы управления изображена на рис. 18.7. Система включает следующие элементы так же как в частично распределенных системах, имеется ряд периферийных блоков управления, соединенных с центром управления с помощью цифровой шины данных. Однако в отличие от систем второго типа индивидуальные контуры управления технологическим процессом реализуются с помощью индивидуальных локальных управляющих устройств, связанных с соответствующими датчиками и исполнительными механизмами.  [c.447]

В режиме максимального теплопереноса капиллярная система частично осушена, а распределение жидкости в ней имеет ступенчатый характер (рис. 4.19). На участке О—1 жидкость движется по всей капиллярной структуре, падение давления в жидкости на этом участке к.Ро-1 определяется перепадом капиллярного давления широких каналов. На участке 1—2 жидкость движется по сетке и узким каналам падение давления АР 1-2 соответствует разности перепада капиллярных давлений узких и широких каналов. На участке 2—3 жидкость переносится только по сетке перепад давления АР -з соответствует разности перепада капиллярных давлений сетки и узких каналов. Исходя из такой многоканальной (в данном случае трехканальной) схемы, максималь-  [c.103]


Проект Р-36 (Системы частично-орбитальной бомбардировки). 17 сентября 1966 года с космодрома Байконур состоялся запуск, официального объявления о котором так и не появилось. Сеть зарубежных станций слежения зафиксировала более 100 обломков на орбите с наклонением 49,6 в диапазоне высот от 250 до 1300 километров. Распределение обломков позволяло предположить, что они представляют собой останки предпоследней ступени на низкой околоземной орбите, последней ступени на вытянутой эллиптической орбите и, может быть, отдельно полезной нагрузки, находяш ейся несколько выше. Подобный двойной или тройной взрыв не мог произойти самопроизвольно, но планировался ли он заранее или был произведен из-за неполадок, осталось неизвестным.  [c.411]

Таким образом, многочастичная физическая система обладает несколькими резко разграниченными временами релаксации ее приближение к равновесию происходит в несколько этапов. При этом в процессе эволюции через относительно большие промежутки времени сокращается число параметров, необходимых для описания состояния системы. На начальной стадии эволюции системы необходимо знать не меньше, чем Л -частичную функцию распределения, а при приближению к конечной, равновесной, стадии достаточно знать лишь локальные термодинамические функции, дающие менее подробное описание системы.  [c.101]

Решение уравнения Лиувилля для функции 6Л/ +1 переменных-представляет собой столь же сложную задачу, как и решение динамической системы уравнений (11.1). Однако оно позволяет получить более простые уравнения для вероятностей нахождения одной или нескольких частиц системы в элементе соответствующего фазового пространства. Исследование свойств молекулярных систем с помощью этих частичных функций распределения составляет содержание метода Боголюбова, изложение которого будет дано в последующих главах.  [c.187]

Из всех частичных равновесных функций распределения особо важное значение имеет бинарная функция 5 2(41, Чг) (или р2(Чь Чг)), так как через нее могут быть выражены термическое и калорическое уравнения состояния и другие термодинамические функции изучаемой системы. Таким образом, в методе Боголюбова исследование равновесных систем сводится не к вычислению конфигурационного интеграла, а к решению уравнений для частичных функций распределения, что оказывается в ряде случаев значительно проще. При этом либо используется разложение функций распределения в ряд по малому параметру, либо для получения замкнутой системы s уравнений для этих функций одна из высших функций распределения приближенно выражается через низшие (процедура расцепления, или обрыва, цепочки уравнений).  [c.214]

Если в реакции участвуют частицы с ненулевыми спинами, то сечение зависит от ориентации спинов. Поэтому, если налетающие частицы или частицы мишени поляризованы, т. е. имеют спины, ориентированные не хаотично, а хотя бы частично упорядоченно, то сечение уже будет зависеть от ориентации спинов. Количественно ориентация спинов пучка (и вообще любой системы) частиц описывается вектором поляризации, который равен среднему значению вектора спина, деленному на максимальное значение проекции этого спина. Абсолютную величину вектора поляризации часто называют просто поляризацией и измеряют в процентах. Если вектор поляризации не параллелен импульсу налетающей частицы, то угловое распределение может быть азимутально несимметричным, т. е. зависеть от полярного угла ф,  [c.116]

Особенность электромагнитных явлений в системе определяется именно изменением свойств заготовок при переходе от одной заготовки к другой. Первые заготовки полностью ферромагнитны, а остальные или частично ферромагнитны (двухслойная среда), или совсем немагнитны. Для построения методики расчета необходимо знать характер распределения магнитного потока и напряженности Н,пг по длине индуктора.  [c.197]

Решения задачи об уравновешивании давлений машины на фундамент заключается в таком рациональном подборе распределенных масс механизмов, который обеспечил бы полное или частичное погашение динамических давлений машины на фундамент. Для уравновешивания сил инерции механизма необходимо и достаточно так подобрать массы его звеньев, чтобы общий центр тяжести двигающейся системы оставался неподвижным. Для уравновешивания инерционных моментов необходимо так подобрать массы механизма, чтобы общий центробежный момент инерции масс всех звеньев механизма относительно осей хг, уг и ху был постоянным.  [c.199]


Второй вариант методики текущего распределения предназначается для участков технологической специализации. Предопределяемое этим тесное кооперирование участков требует либо полной централизации распределительной работы в цехе, т. е. сосредоточения её в цеховом ПДБ, либо регламентации сроков движения изделий по. каждому участку (т. е. практически пооперационных, сроков). Первое решение позволяет и при технологической структуре цеха применять в централизованном порядке описанный выше вариант распределения. Но в заводской практике такая система применяется лишь в небольших цехах (примерно до 100 рабочих мест). В крупных цехах целесообразнее применять другую систему, характеризующуюся частичной децентрализацией распределительной работы и при технологической специализации участков. В качестве примера можно привести следующую относительно простую форму такого решения вопроса. По всем назначенным данному цеху деталям ПДБ помимо производственных спецификаций получает или заготовляет требования и наряды на каждую операцию. Руководствуясь данными спецификации, планировщик цеха проставляет на нарядах предельные сроки выдачи их в работу и раскладывает эти документы комплектами в простой картотеке сроков (фиг. 10) по  [c.184]

Вычисление кривизны параболы кривой ликвидуса позволяет сделать дальнейшие выводы, в особенности для бинарных систем в органической химии. В этих системах термином промежуточная фаза может быть обозначено молекулярное соединение, состоящее из молекул компонентов 1 и 2. Тогда представляется также возможным допустить наличие частичных молекулярных связей в жидкой фазе и, если степень диссоциации сравнительно мала, провести статистический расчет, подобный применявшемуся для сплавов с упорядоченным распределением атомов (гл. III, п. 1 до п. 4). Таким образом установлено, что частная производная определяется по степени диссоциации при концентрации х .  [c.88]

В экспериментах по адаптивному управлению обоими макетами транспортных роботов в реальном масштабе времени варьировались в широком диапазоне целый ряд условий и параметров, а именно расположение препятствий в рабочей зоне, распределение нагрузки на шасси, электромеханические параметры приводов. характер грунта и т. д. Благодаря самонастройке системы управления роботы обеспечивали достижение цели с заданной точностью в частично неопределенных и непредсказуемо изменяющихся условиях эксплуатации.  [c.206]

При температурах ниже температуры начала рекристаллизации наблюдается явление, называемое возвратом. При возврате (отдыхе) форма и размеры деформированных, вытянутых зерен не изменяются, но частично снимаются остаточные напряжения. Эти напряжения возникают из-за неоднородного нафева или охлаждения (при литье и обработке давлением), неоднородности распределения деформаций при пластическом деформировании и т.д. Остаточные напряжения создают системы взаимно уравновешивающихся сил и находятся в заготовке, не нагруженной внешними силами. Снятие остаточных напряжений при возврате почти не изменяет механические свойства металла, но влияет на некоторые его физикохимические свойства. Так, в результате возврата значительно повышаются электрическая проводимость, сопротивление коррозии холоднодеформированного металла.  [c.61]

Отказ как случайное событие. Полную или частичную утрату системой способности выполнять возложенные на нее функции называют отказом. Последний может быть как результатом развития дефектов, содержащихся в системе к началу эксплуатации, так и результатом накопления повреждений и необратимых изменений в процессе эксплуатации. Начальное распределение дефектов, условия эксплуатации и взаимодействия системы с окружающей средой носят случайный характер. Поэтому отказы следует рассматривать как случайные события.  [c.319]

Заметим, что последнее уравнение системы (86.7) для функции является замкнутым и тождественным уравнению Лиувилля (86.2). С математической точки зрения интегрирование системы уравнений (86.7) следовало бы начинать с интегрирования этого уравнения. При этом, естественно, не нужно было бы интегрировать остальные N — 1 уравнения системы, так как все -частичные функции распределения могут быть найдены по формулам (86.4), после того как найдена функция (х/,..., х , /), и система вообще стала бы не нужной. Однако, как мы уже говорили, интегрирование уравнения Лиувилля представляет собой практически невыполнимую задачу.  [c.478]

В настоящем разделе рассматривается методика определения распределения температуры в полупрозрачном теле, разрушающемся под действием теплового потока, подводимого извне к граничной поверхности. Для общности предположим, что среда является излучающей, поглощающей и изотропно рассеивающей. На фиг. 12.7 представлена геометрия задачи и система координат. Рассматривается полубесконечное тело (О < д < оо), которое разрушается вследствие нагрева с поверхности раздела газ — жидкость. При стационарном процессе уноса массы температура поверхности раздела Го является максимальной и по мере удаления от поверхности раздела температура тела падает. Излучение, испускаемое внутренними слоями вещества и достигающее поверхности раздела жидкость — воздух, частично пропускается, а частично отражается ею, причем предполагается, что эта поверхность отражает идеально зеркально. Если в течение некоторого времени унос массы происходит с постоянной скоростью и неустановившаяся стадия процесса пройдена, то  [c.511]

Шуман [107], анализируя последовательность образования мартенситных фаз в марганцевых сплавах, построил качественную концентрационную зависимость энергии д. у., свидетельствующую о ее немонотонном ходе. Анализ результатов исследований [1, 4, 31, 39] показывает, что увеличение содержания марганца в аустените приводит к изменению количества д. у., находящемуся в строгом соответствии с количеством е-мартенсита, образующегося при охлаждении или деформации. Количественные измерения энергии д. у. на основании изучения тонкой структуры отдельных дефектов и их комплексов в сплавах системы Fe—Ni и Fe—Мп в зависимости от содержания углерода и температуры испытания были проведены в работах Ю. Н. Петрова [102, 108, 109], Так как энергия д. у. марганцовистого аустенита низка, проводили измерения на основании статистического анализа распределения по размерам тройных дислокационных узлов, как наиболее равновесной дислокационной конфигурации. Надежных измерений величины энергии д. у. по расщепленным дислокациям провести не удавалось из-за сильного влияния поверхностей фольги, локальных внутренних напряжений. на равновесное расстояние между частичными дислокациями.  [c.65]


Робототехнические системы, особенно с адаптивными и интеллектуальными роботами, нуждаются в микропроцессорном управлении. Здесь речь идет о распределенном, а не централизованном управлении. Распределенное машинное управление возможно либо с немощью микроЭВМ, либо с помощью микропроцессорных блоков функционального назначения (БФН) [12]. Преимущественное предпочтение отдается БФН. Когда в алгоритмах встречаются необходимые операции с матрицами, то самым удобным языком встроенного программирования оказывается язык с по-следовате.льной логикой диапрограмм перехода состояний. За универсальность пришлось платить снижением реального быстродействия и объемом памяти. Число управляющих ЭВМ не монеет быть слишком большим, так как это требует использования для управления распределенными объектами весьма развитой периферии. Трудности возникают также при взаимодействии программистов с операционными системами. Частично их можно решить разработкой специализированных операционных систем и специальных языков. Однако принципиальное решение проблемы os-Дания экономичных управляющих комплексов получено лишь в последние годы. Появление мини- и микроЭВМ, микропроцессорной техники дало возможность реализовать децентрализованный принцип построения сложных систем управления. Применение микропроцессорной техники для управления роботами существенно сократило и число и объем задач, для решения которых необходимо использовать управляющую ЭВМ.  [c.75]

Если опоры имеют массу, которой нельзя пренебречь, то при уравновешивании рассматривается не изолированный ротор, а система ротор — опоры. Компенсация т. е. уравновешивание по первым двум формам для податливых низкочастотных опор, производится балансировочными грузами, частично распределенными по длине. Соотношение между грузами в средней части ротора и в концевых плоскостях определяется отношением масс ротора и колеблющейся массы опор, как это следует из рассмотрения обобщенных условий ортогональности для колеблющейся системы ротор — опоры. Если распределенная масса ротора т, масса оноры М,, , то закон распределения балансировочных грузов, создающих постоянный эксцентриситет, таков  [c.158]

Далее он переходит к систематическому изложению равновесной статистической механики (гл. 4—10), начиная с введения равновесных ансамблей Гиббса для различных типов контакта системы с окружением и обсуждения их связи с термодинамикой (гл. 4). В качестве простых примеров рассмотрены идеальные и слабоидеальные газы, причем очень подробно обсуждается диаграммный метод для случаев слабого взаимодействия и малой плотности. Большое внимание уделяется методу частичных распределений в равновесном случае. Этот метод далее, в гл. 8, служит основой для приближенных теорий жидкого состояния (уравнение Перкуса — Йевика, гиперцепное приближение). Большая  [c.5]

До сих пор мы рассматривали лишь классические системы. Частичные функции распределения для кеантовостлтистических сщт м значительно более сложны, так как корреляции возникают здесь не только за счет взаимодействий, но и за счет квантовой статистики. К счастью, для большинства жидкостей, представляющих интерес (за исключением гелия-4), квантовостатистические эффекты не очень важны и классическое приближение ока[зы-вается достаточным.  [c.267]

Преимущества частично распределенных систем управления заключаются в удачном сочетании достоинств централизованных и распределенных систем управления. В системах такого типа пульт оператора, оснащенный устройствами отображения информации, играет централизующую роль и позволяет управлять как процессом в целом, так и его составляющими. В то же время физическая протяженность контуров управления значительно сокращена, вследствие чего возросли надежность, помехо- и отказоустойчивость. Даже если связь центральной ЭВМ с периферийным блоком управления нарушена, последний продолжает функционировать как локальное управляющее устройство. Таким образом, поврежденная часть системы продолжает работать, пусть даже с меньшей эффективностью.  [c.447]

Полностью распределенная система управления обладает теми же основными преимуществами, что и частично распределенная система централизованное управление процессом в целом плюс локальные управляющие устройства, размещенные в производственных помеще-  [c.447]

Автоматическое регулирование Управление с компенсацией возмущения Программное управление Оптимальное управление Адаптивное уяравление Тип 2-частично распределенная Тип 3-полностью распределенная Производства непрерывного типа СЧПУ с прямым цифровым управлением Гибкие производственные системы  [c.453]

Проведенный авторами анализ показал, что для автомобилей с бензиновыми двигателями складывается следующее соотношение неисправностей и нарушений регулировок, вляющих на токсичность и топливную экономичность система питания — 30... 40%, система зажигания — 25. .. 30%, собственно двигатель — 20. .. 25%, трансмиссия и ходовая часть— 15%. В пределах указанных групп распределение неисправностей обобщалось для автомобилей ГАЗ-24-01, ЗИЛ-130 и автобусов ЛиАЗ-677 (рис. 51). По системе зажигания частичный или полный отказ свечей зажигания — 63% обнаруженных случаев отклонения угла опережения зажигания от нормы— 16% отклонения от нормы угла замкнутого состояния контактов прерывателя— 13%. По системе питания превышение норм стандарта на содержание СО на режимах холостого хода — 70% переобогащение смеси на нагрузочных режимах—23% пе-реобеднение смеси — 7. .. 9%.  [c.83]

Электродинамика (и оптика) движущихся сред, развитая Ло-рентцом, есть часть его общей электронной теории, в силу которой все электромагнитные свойства вещества обусловливаются распределением электрических зарядов и их движением внутри неподвижного эфира. В качестве формул преобразования координат при переходе от одной инерциальной системы к другой сохраняются преобразования Галилея, и, поскольку отрицается принцип относительности, уравнения электродинамики Лорентца не являются инвариантными по отношению к этим преобразованиям. Теория Лорентца означала очень крупный шаг вперед и разрешала большой круг вопросов, представлявших значительные теоретические трудности. В случае оптических явлений она совпадает с теорией Френеля и также приводит к представлению о частичном увлечении световых волн. По теории Лорентца движение вещества есть движение молекул и связанных с ними зарядов в неподвижном эфире, и учет этого движения показывает, что в среде, движущейся со скоростью V, свет распространяется со скоростью q + (1 — in )v, где l — скорость света в неподвижной среде. Таким образом, теория Лорентца приводит к формуле частичного увлечения Френеля, хорошо подтвержденной тщательными измерениями.  [c.449]

Допустим, что в полость, окруженную оболочкой с идеально отражающими стенками, помещено тело. Излучение, иепускаемое телом, не рассеивается по всему пространству, а, отражаясь от стенок, сохраняется в полости, падая вновь на тело и частично поглощаясь в нем. В таких условиях никакой потери энергии в системе тело — излучение не происходит. Однако это еще не означает, что тело и излучение находятся в равновесии между собой. Энергия такой системы содержится частично в виде энергии излучения, т. е. электромагнитных волн, а частично — в виде внутренней энергии тела. Состояние системы будет равновесным, если с течением времени распределение энергии между телом и излучением не меняется. Поместим внутрь полости нагретое тело (твердое, жидкое или газообразное). Если в единицу времени тело испускает больше, чем поглощает (или наоборот), то температура его понижается (или повышается). При этом испускание  [c.130]


В 1956 г. появляется статья Браута и Пригожина, открывшая новое направление, относящееся к брюссельской щколе [50]. Основная идея этой работы заключалась в введении Фурье-раз-ложения функции распределения и последовательном применении переменных угол — действие (в классической механике). Это позволило получить основное кинетическое уравнение для Л -частичной функции распределения по импульсам. Обобщение этой теории проведено с помощью теории возмущений и диаграммой техники [51], которое затем было перенесено и на неоднородные системы [52 53]. В настоящее время это направление интенсивно развивается.  [c.215]

Наиболее часто встречается в практике метод нанесения водных растворов и дисперсий ингибиторов на поверхность бумаги-основы вращающимся и частично погруженным в рабочие растворы валиком или системой валиков. Основными характеристиками работы валиновых узлов нанесения ингибиторов, определяющими качество антикоррозионной бумаги и, прежде всего, ее антикоррозионные свойства, являются возможность достижения максимального введения ингибитора в бумагу-основу, равномерного его распределения по поверхности бумажного полотна и легкого регулирования количества и качества нанесенного слоя ингибитора применительно к различным бумагам-основам. На конечный результат процесса оказывают влияние две группы факторов первая связана с работой узла нанесения и свойствами пропиточного раствора, определяющими гидродинамику нанесения, вторая — с качеством бумаги-основы, определяющим кинетику процесса пропитки.  [c.144]

Фаза S имеет форму пластинки и зарождается предпочтительно на дислокациях, как и фаза в в сплаве системы А1—Си. Она по крайней мере частично не когерентна с матрицей и имеет приблизительный состав Ab uMg. Вызывает удивление, что до сих пор нет подходящей количественной оценки процессов, имеющих место во время стандартной термомеханической обработки такого широко применяемого сплава 2024. Упрощенное качественное описание термомеханической обработки этого сплава можно представить следующим образом. При температуре нагрева перед закалкой большинство легирующих элементов переходит в твердый раствор. Однако марганцовистые соединения и другие интерметаллические частицы не растворяются. Эти частицы препятствуют движению границ зерен, способствуя образованию структуры с удлиненным зерном во время изготовления полуфабриката. Быстрое охлаждение с температуры под закалку приводит к пересыщению твердого раствора с почти равномерным распределением меди и магния в матрице. В этих условиях даже границы свободны от выделений, как показано на рис. 86. Если скорость охлаждения во время закалки меньше, чем 550 °С/с, то зарождение и рост фазы, обогащенной медью, может происходить по границам зерен с образованием при этом зон, обедненных медью, непосредственно прилегающих к границам зерен.  [c.237]

Сначала следует оценить энергию системы данного состава для различных микроскопических конфигураций атомов. В большинстве исследований принимается, 4to энергия бинарной системы А—В есть линейная функция чисел пар АА, АВ и ВВ, поскольку междуатомные силы очень быстро убывают с расстоянием и поэтому ближайшие соседи определяют большую часть полной энергии системы. Это допущение является несколько сомнительным по причинам, частично расмотренным в гл. II, п. 3 и 4. Кроме того известно, что параметр решетки зависит от степени порядка. Следовательно, если упорядочение сопровождается сжатием решетки, энергия взаимодействия между указанными парами должна возрасти. Борелиус [35] указал, что для лучшего приближения следует рассматривать не энергию пар, а энергию групп, состоящих более чем из двух атомов. Далее, желательно точно учесть энергию электронов, задаваясь атомными конфигурациями и вычисляя энергию распределения электронного газа, отвечающую минимуму свободной энергии для данной конфигурации атомов.  [c.80]

Для частичного осветления охлаждающей воды может применяться также фильтрование воды через грубозернистые песчаные, полимерные или антрацитовые фильтры с крупностью фильтрующей загрузки 1,5—2,5 мм. Слой фильтрующего материала в таких фильтрах 2,5—3,5 м. Скорость фильтрования 10—15 м/ч. В целях экономии промывной воды для промывки таких фильтров применяют водовоздушную промывку. Промывные системы грубозернистых фильтров обычно рассчитывают на подачу промывной воды с интенсивностью 3,5—5 л/(с-м ) и сжатого воздуха с интенсивностью 20—25 л/(с м ). Грубозернистые фильтры могут быть как открытые, так и напорные. Их целесообразно выполнять без гравийных подстилающих слоев с колпачковым дренажом, рассчитанным на равномерное распределение по площади фильтра промывной воды и сжатого воздуха.  [c.647]

СТЕКЛОПЛАСТИК ОРИЕНТИРОВАННЫЙ (СВАМ, АГ-4с) — пластмасса, армированная параллельно расположенными волокнами, нитями или жгутами. С. о.— конструкционный и электроизоляционный материал, специфич. особенности к-рого определяются способом его получения, переработки и св-вами исходных компонентов (стеклянных волокон и полимерных связующих). Для С. о. характерны сочетание высокой прочности и малого уд. веса ярко выраженная анизотропия физико-механич. св-в, позволяющая усиливать материал конструкции в заданном направлении в соответствии с распределением напряжений в деталях стойкость к агрессивным средам пезагнивае-мость немагнитность и высокие диэлект-рич. св-ва малая теплопроводность. Повышенные физико-механич. св-ва обусловливаются возможностью эффективного использования прочности тонких стеклянных волокон в с. о. Это достигается строгой ориентацией и натяжением волокон в полимерном связующем отсутствием переплетений, вызывающих дополнит, напряжения и уменьшение прочности, особенно при сжатии частичным или полным исключением текстильной переработки, снижающей прочность самих волокон применением полимерных связующих, обеспечивающих совместную работу системы волокон вплоть до момента разрушения. В С. о. можно использовать стеклянные волокна диаметром свыше 10—12 мк (к-рые вследствие малой гибкости не могут применяться в произ-ве стеклотканей). Для получения с. о. применяются гл. обр. стеклянные волокна алюмоборосиликатного, реже кальциевонатриевого и др. составов. Оптимальное содержание стекла в С. о. 78—85% (по весу). Выбор связующих определяется требованиями к прочности, жесткости, термо- и влагостойкости, диэлек-трич. св-вам и др., а также технологич. и экономич. соображениями. От упругих и неупругих хар к связующих, их когезионной прочности и адгезии к стеклу, смачиваемости, обусловливающей равномерное распределение пленок на поверхности волокон, зависит степень использования прочности волокон и св-ва материала. Широкое применение в С. о. находят композиции  [c.266]

Книга известных французских специалистов Мареша-ля и Франсона Структура оптического изображения восполняет имеющийся пробел в литературе, посвященной оптическим системам. В этой книге изложена в сжатом (иногда даже чрезмерно), но наглядном виде теория образования изображений оптическими приборами, приведен математический аппарат, необходимый для проведения вычислений, решен ряд конкретных задач, связанных с распределением света в изображениях сложных объектов при различных условиях освещения (когерентном, частично когерентном и некогерентном), и приведен довольно разнообразный иллю1стративный материал, относящийся к этому вопросу.  [c.6]


Смотреть страницы где упоминается термин Системы частично распределенные : [c.448]    [c.81]    [c.463]    [c.24]    [c.173]    [c.217]    [c.680]    [c.149]    [c.138]    [c.327]    [c.182]   
САПР и автоматизация производства (1987) -- [ c.446 ]



ПОИСК



Распределение системы

Система распределенная

Частичная

Частичные функции распределения идеальных систем в равновесном состоянии



© 2025 Mash-xxl.info Реклама на сайте