Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Контроль поверхностей и покрытий

Во втором издании (первое —в 1974 г.) рассмотрены дефекты, возникающие при производстве металлических полуфабрикатов и изготовлении деталей машин, виды контроля и методы обнаружения Дефектов. Изложены физические основы ультразвуковой дефектоскопии, контроля толщины и покрытий, структуры и физико-механи-ческих свойств металлов. Показаны особенности возбуждения и распространения ультразвука в изделиях, ограниченных плоскими и кривыми поверхностями. Приведены рекомендации по разработке методик контроля.  [c.25]


КОНТРОЛЬ КАЧЕСТВА ПОВЕРХНОСТЕЙ И ПОКРЫТИЙ  [c.483]

Как уже было сказано, качество пайки во многом зависит от качества подготовки поверхностей и покрытий под пайку. Количественную оценку микрорельефа паяемых деталей определяют визуально (по эталону), иногда с помощью специальных приборов, например профилографов и профилометров. В ряде случаев для контроля шероховатости поверхностей используют эндоскоп, лупу, микроскопы и т.д. Из неполного перечня перечисленных способов контроля наиболее оптимален в условиях производства визуальный с помощью лупы и микроскопов различного типа. Они позволяют обнаружить трещины, поверхностные повреждения, забоины, риски, поры, зарезы, рельеф поверхности, т.е. высоту и шаг гребешков, и т.д.  [c.483]

При предварительном контроле основного и сварочных материалов устанавливают, удовлетворяют ли сертификатные данные в документах заводов-поставщиков требованиям, предъявляемым к материалам в соответствии с назначением и ответственностью сварных узлов и конструкций. Осматривают поверхности основного материала, сварочной проволоки н покрытий электродов в целях обнаружения внешних дефектов. Перед сборкой и сваркой заготовок проверяют, соответствуют ли их форма и габаритные размеры установленным, а также контролируют качество подготовки кромок и свариваемых поверхностей. При изготовлении ответственных конструкций сваривают контрольные образцы. Из них вырезают образцы для механических испытаний. По результатам испытаний оценивают качество основного и сварочных материалов, а также квалификацию сварщиков, допущенных к сварке данных конструкций.  [c.243]

Контроль за качеством покрытий осуществляют пооперационной проверкой технологического процесса окраски, а также с помощью контрольно-измерительных приборов. Пооперационный контроль должен начинаться с проверки качества подготовки поверхности затем проверяют все последующие стадии процессов окраски и сушки. Особенно важно проводить контроль при использовании многослойных покрытий. При этом контроль осуществляют подцветкой используемых материалов специальными пигментами.  [c.154]

Для контроля сплошности диэлектрических покрытий (эмаль, стекло, эпоксидная смола) на внутренней поверхности труб применяют электроискровые приборы. Так, для контроля труб в цеховых условиях применяют дефектоскоп ИД-Ш. Его работа основана на электроискровом пробое дефектных мест в диэлектрическом покрытии высоким выпрямленным напряжением. Контроль осуществляется с помощью сменных электроискровых головок, вставляемых в трубу на металлической штанге. Дефектоскоп снабжен световой и звуковой сигнализацией.  [c.186]


Никитин А, И, Комплексный дефектоскоп ДК-1 для контроля качества диэлектрических покрытий на внутренней поверхности труб. — Дефектоскопия, 1980, № 12. с. 33—38,  [c.188]

В последние годы при ХТО все чаш,е применяют различные способы местной защиты поверхностей, не подлежаш,их обработке. К новым процессам химико-термической обработки и его контроля можно отнести получение материалов с двумя различными покрытиями, насыщение с последующим механическим упрочнением, применение способов предупреждения деформации, дальнейшее совершенствование и использование методов контроля толщины и механических свойств покрытий.  [c.37]

Подготовка деталей к капиллярному контролю включает очистку контролируемой поверхности и полостей дефектов от загрязнения, лакокрасочных покрытий, моющих составов и дефектоскопических материалов, оставшихся от предыдущего контроля. Возможны различные способы очистки и зачистки контролируемых поверхностей деталей.  [c.50]

Радиометрический метод. Рекомендуется применять для измерения любых покрытий при условии различия на 2—4 атомных номера основы и покрытия. Пределы измерения приборами, выпускаемыми отечественной промышленностью, достигают О—100 мкм, при этом погрешность измерения 10%. Достоинством этого метода являются возможность контроля покрытия без контакта с поверхностью детали, длительный срок службы датчиков, возможность автоматизации процесса контроля при любой серийности производства.  [c.115]

ЛИЙ, технические условия на подготовку поверхности и толщину покрытий методы контроля покрытий - осмотром, химическим и электромагнитным способом КОЙ толщины покрытия )  [c.112]

В последнее время начинает получать распространение магнитный метод контроля толщины слоя покрытия, основанный на изменении магнитного потока в цепи, состоящей из основного металла детали — стали и магнита прибора при наличии между ними немагнитного слоя покрытия. Это изменение магнитного потока обнаруживается по силе отрыва магнита от поверхности испытываемой детали, измеряемой при помощи торсионных весов или каким-либО другим методом, в зависимости от конструкции магнитного толще-мера.  [c.543]

При других методах измерения эти ошибки могут быть значительными. Так, при прямом бесконтактном методе фактический размер детали часто определяется путем измерения величины зазора (например, с помощью фотоэлемента) между поверхностью детали и измерительной базой контрольного устройства. Фиксированная величина этого зазора будет определяться при этом не только положением поверхности детали по отношению к измерительной базе, но и другими, случайно появляющимися факторами. Фиксированная величина зазора может уменьшаться, если поверхность детали покрыта пленкой смазывающе-охлаждающей жидкости или если в зазор попадают абразивная пыль, мелкая стружка, что весьма характерно для шлифовальных операций. При косвенных методах измерения, когда об изменении размера детали судят по перемещению частей станка или режущего инструмента, на точность контроля оказывают влияние такие факторы, как жесткость элементов, технологической системы, точность станка и износ режущего инструмента.  [c.94]

При проведении метрологического контроля чертежей осуществляют следующие операции проверяют корректность текстовых требований чертежей оценивают достаточность номенклатуры требований чертежа требований ко всем параметрам изделия, влияющих на выполнение своих функций (размерам, отклонениям формы и расположения, параметрам шероховатости и твердости поверхностей, толщине покрытий и др.) анализируют рациональность установленной системы требований чертежа касающихся контроля изделия. В чертежах задаются не только непосредственно измеряемые параметры, но и параметры, которые относятся к технологии изготовления. Эти параметры устанавливают, как правило, технологи, и они являются результатом совместной работы с конструкторами оценивают контролепригодность изделия. Контроль изделия должен быть обеспечен средствами измерения общего применения и только в крайних случаях нестандартизованными измерительными средствами.  [c.179]


Различают следующие виды контроля визуальный контроль изделий после покрытия (цвет, блеск, шероховатость поверхности) определение пористости и толщины слоя покрытий испытание на коррозионную стойкость определение механических и физических свойств покрытий (пластичности, стойкости к высоким температурам и др.).  [c.224]

Контроль заготовки и сборки проверяется материал (может браковаться при наличии вмятин, заусенцев, окалины, ржавчины), качество подготовки кромок, величина зазоров, правильность разделки. При этом применяют универсальный мерительный инструмент и шаблоны (см. рис. 99). Перед пайкой проверяется качество подготовки поверхности, расположение припоя и наличие флюса в зоне соединения. Тщательность очистки и обезжиривания можно контролировать по растеканию капли чистой воды по подготовленной к пайке поверхности, хорошее смачивание и растекание свидетельствуют о правильной подготовке. Перед напылением контролируют подготовку поверхности - для лучшего сцепления покрытия с основой необходима ее шероховатость. Контролируют состав и свойства вспомогательных материалов.  [c.341]

В этой главе приведены основные требования к конструкции оборудования и сооружений, защищаемых от коррозии, правила подготовки металлических и бетонных поверхностей, основные правила производства работ, краткая характеристика оборудования, механизмов и приспособлений, применяемых при производстве антикоррозионных работ, и некоторые сведения по контролю качества покрытий. Включены сведения о химически стойких материалах и изделиях, имеющих в настоящее время широкое применение при защите оборудования и сооружений от коррозии, а также новых материалах, прошедших опытно-промышленную проверку и перспективных для широкого использования. Подробные данные по химической стойкости материалов и покрытий на их основе 160  [c.160]

Получение комбинированных футеровочных покрытий включает следующие стадии подготовку поверхности и материалов, приклеивание непроницаемого подслоя, получение покрытия (шпатлевка и укладка штучных материалов), сушку и контроль качества покрытия.  [c.182]

Контроль качества и ремонт покрытий. Качество лакокрасочных покрытий обеспечивается тщательной очисткой металлической поверхности, соблюдением технологии получения покрытия, применением материалов, соответствующих требованиям ГОСТов и ТУ. Методы контроля качества лакокрасочных покрытий описаны в разделах 1.13 и 1.14.  [c.239]

Качество всех защитных и защитно-декоративных покрытий — металлических и неметаллических, органических и неорганических — должно соответствовать определенным техническим условиям. Контроль качества покрытий основан на определении таких характеристик, как толщина, сцепление с основой, пористость, твердость, истираемость, эластичность, чистота поверхности и т. д.  [c.233]

Существенной характеристикой эмалевого покрытия является его прочность на удар. Из-за трудности определения напряжений, возникающих в композиции металлическая основа — эмалевое покрытие при ударе, данные, полученные при испытании на удар, сопоставимы только в случае применения одинаковых приборов и образцов и носят сравнительный характер. Вследствие своей простоты эти испытания широко применяются для контроля качества эмалевого покрытия. Ударная прочность покрытия существенно зависит от формы поверхности. Например, ударная прочность покрытия на выпуклой поверхности в 1,5—3 раза ниже, чем на плоской и вогнутой.  [c.6]

Для защиты металлоконструкций от коррозии используют также метод нанесения ингибитора на их поверхность КЗ водных или спиртовых растворов. Например, стальные емкости омывают ингибированными растворами и просушивают горячим воздухом с температурой 70. .. 90 С. На внутренней поверхности создаются тончайшие пленки ингибиторов, которые длительно (более 10 лет) защищают изделия от коррозии. Ввиду летучести ингибитора нет необходимости в контроле сплошности такого покрытия.  [c.672]

Магнитопорошковым методом определяют поверхностные дефекты и дефекты, располагающиеся на небольшой глубине. Чувствительность контроля определяется многими факторами магнитными характеристиками материала, свойствами применяемого порошка и т.п. Увеличение шероховатости приводит к снижению чувствительности, поскольку магнитный порошок оседает на неровностях поверхности, т. е. поверхность нужно готовить очистить от окалины, грязи, смазки. Наклеп поверхности часто принимают за дефект. Контроль сварных швов возможен только после их механической зашлифовки. Допускается проведение контроля по немагнитным покрытиям. Наличие таких покрытий при толщине до 20 мкм практически не влияет на чувствительность метода.  [c.111]

У сосудов, заглубленных в грунт, наружная поверхность обычно покрыта гидроизоляционным составом и недоступна для полного контроля. Частичный контроль состояния защитного покрытия может быть проведен путем рытья шурфов на глубину 1...2 м для осмотра. Основными видами контроля технического состояния изоляции и коррозийного состояния корпуса подземных сосудов являются внутренний осмотр и ультразвуковая толщинометрия, являющаяся в данной ситуации также и методом проверки качества изоляции.  [c.255]

ГОСТ 2,107—68 в отличие от ГОСТ 3458—59 и ГОСТ 2940—63 устанавливает, что на рабочих чертежах изделий, подвергаемых покрытию, указывают размеры и шероховатость поверхности до покрытия, fe каких-либо исключений для резьбы. Единое правило указания размеров и шероховатости поверхностей значительно облегчит выполнение и чтение чертежей. Это избавит конструкторов, а также работкнков, связанных с изготовлением и контролем деталей, от запоминания исключений из общего правила.  [c.110]


После реконструкции, проведенной с целью устранения недостатков, выявившихся при эксплуатации, завод-автомат выполняет автоматически в определенной последовательности следующие стадии производственного процесса на позициях / — загрузка чушек алюминиевого сплава 2—плавление, рафинирование и очистка сплава от шлака 3 — кокильная отливка 4 — отрезка литников и возврат их в плавильную печь для переплавки 5 — загрузка контейнеров поршнями 6—термическая обработка 7 — автоматический бункер 8 — возврат контейнеров 9 — обработка базовых поверхностей (одновременно у двух деталей) 10 — черновое растачивание и зацентровка (одновременно четырех деталей) 11 — черновое обтачивание (одновременно четырех деталей) 12 — фрезерование горизонтальной прорези (одновременно у четырех деталей) 13 — сверление десяти смазочных отверстий в каждой детали (одновременно у четырех деталей) 14 — чистовое обтачивание (одновременно четырех деталей 15 — разрезание юбки и срезание центровой бобышки (одновременно у четырех деталей) 16 — подгонка веса поршней (одновременно у двух деталей) путем удаления лишнего мет 1лла на внутренней стороне юбки 17 — окончательное шлифование на автоматическом бесцентрово-шлифовальном станке (одновременно четырех деталей) 18 — мойка 19 — автоматический бункер 20 — обработка отверстий под поршневой палец (тонкое растачивание отверстий растачивание канавок под стопорные кольца развертывание отверстий) 21 —мойка 22 — контроль диаметров и конусности юбки и сортировка на размерные группы 23 — контроль формы и размеров отверстий под палец и сортировка на размерные группы 24 — покрытие поршней антикоррозийной смазкой (консервация) 25 — завертывание в водонепроницаемую бумагу (пергамент) 26 — набор комплекта поршней, формирование картонной коробки, заклейка ее и выдача.  [c.467]

Для автоматизированного контроля толщины неэлектропроводящих покрытий, нанесенных на немагнитные металлические изделия, создан РТК НК на базе вихретокового толщиномера АТ-10НЦ и промышленного миниробота ПР5-2П (рис. 7). В случае отклонения толщины покрытия по верхней или нижней границе поля допуска робот останавливает операцию контроля. Поверхность сканирования определяется максимальным перемещением преобразователя рабочего органа робота в горизонтальной плоскости (до 105 мм) и углом поворота (до 180°). Данный комплекс снабжен также винтовым устройством для подачи изделий на позицию измерения с приводом от манипулятора и имеет следующие технические характеристики диапазон измеряемых толщин покрытий О—2 мм погрешность измере-  [c.343]

В 10—30-х годах текущего столетия были опробованы методы микроскопического анализа изучение под микроскопом поперечного шлифа электролитически покрытой поверхности, измерение под микроскопом неровностей поверхности по репликам из желатина и т. д. Предпринимали попытки косвенной оценки неровностей поверхности по потерям энергии маятника при торможении его неровностями поверхности во время качания, по разности размеров деталей до и после доводки, по предельному углу регулярного отражения света, по теневой картине поверхности на экране с увеличенными изображениями поверхностных дефектов, по расходу воздуха через участок контакта сопла с испытуемой поверхностью, по четкости изображения растра на испытуемой поверхности или на экране после отражения от нее светового пучка, по электрической емкости контактирующей пары испытуемая поверхность — диэлектрик с нанесенным слоем серебра , по нагрузке на индентер при определенном его сближении с испытуемой поверхностью, по изображению мест плотного соприкосновения призмы с неровностями поверхности и т. д. Были опробованы методы исследования рельефа поверхности с помощью стереофотограмм и стереокомпаратора. На производстве в этот период доминировали органолептические методы контроля визуальное сравнение с образцом, сравнение с помощью луп, сравнение на ощупь ногтем, краем монеты и т. п. В 30-х годах был предложен и реализован в двойном микроскопе метод светового сечения (Линник, Шмальц), а также метод микроинтерференции и основанные на нем микроинтерферометры, сочетающие схемы микроскопа и интерферометра Майкельсона. В этот же период  [c.58]

Для автоматизированного контроля толщины неэлектропроводящих покрытий, нанесенных на немагнитные металлические детали, создан РТК НК на базе вихретокового толщиномера ВТ-10НЦ и промышленного миниробота ПР5-2П, 13.4.3. В случае несоблюдения толщины покрытия по верхней или нижней границе поля допуска робот останавливает операцию контроля. Поверхность сканирования определяется максимальным перемещением датчика схватом робота в горизонтальной плоскости - 105 мм и углом поворота — до 180°.  [c.116]

Проверка герметичности соединения гелиевым или галоидным течеискателями. При невозможности применения тече-искателей допускается контроль керосином или сжатым юзду-хом. На поверхности шва, покрытого меловым раствором, не должно быть жирных пятен керосина или воздушных пузырьков, образованных при смачивании шва мылыным раствором. Для приготовления мыльного раствора берут 40 г мыла или мыльного порошка и растворяют его в 1 л теплой воды. Чтобы раствор не высыхал, в него добавляют несколько капель глицерина.  [c.109]

Применяемый метод неразрушающего контроля с помощью ультразвука должен обеспечивать в процессе производства обнаружение дефекта такого размера, который в дальнейшем может привести к разрушению корпуса. При правильном проведении 100%-ного контроля есть возможность установить местонахождение и определить размеры трещин, как начинающихся на поверхности, так и находящихся в толще материала. При условии, что контроль проведен тщательно, на поверхности корпуса могут быть обнаружены трещины глубиной <0,6 см. Труднее осуществлять контроль, если поверхность защищена покрытием. Так, прохождение ультразвука через аустенитные стали не дает четкой картины. поверхности раздела между покрытием и металлом корпуса, в результате чего дефекты могут оказаться замаскированными или может сложиться ложное представление о них. Однако с достаточной определенностью можно установить дефект протяженностью 1,2 см, так как он будет заметен на экране прибора. Все корпуса реакторов перед сдачей в эксплуатацию испытывают гидравлической опрессовкой давлением, равным 50% рабочего давления, при комнатной температуре. Этот вид испытания помогает выявить более мелкие дефекты, которые могут привести к разрушению корпуса при рабочих температуре и давлении. Используя результаты таких испытаний, можно рассчитать число рабочих циклов, которым корпус должен противостоять в процессе работы, при условии, что напряжения, возникающие при подаче давления, доминируют, а всеми другими источниками можно пренебречь. Чтобы гарантировать надежность работы корпуса до конца срока службы, испытание можно повторить в процессе эксплуатации. Однако следует помнить, что каждое испытание давлением таким способом использует заметную часть запаса усталостной прочности корпуса. Из сказанного ясно, что если корпус тщательно изготовлен из требуемого материала и контролем не выявлены дефекты, которые могли бы вызвать его разрушение, он должен обеспечить надежную работу реактора. Для большей гарантии было предложено проверять корпуса в процессе эксплуатации, вводя с внутренней стороны автоматические ультразвуковые и сканирующие датчики, которые обеспечивают просмотр всех критических участков корпуса. Кроме того, было предложено использовать методику регистрации перепадов напряжения как средство обнаружения распространения трещин, однако до сих пор положительных результатов получено не было.  [c.169]


Простота реализации, отсутствие необходимости покрытия поверхностей и чувствительность метода к высоте шероховатости до единиц ангстрем делают дифференциальный интерференционный контрастный микроскоп очень удобным инструментом для контроля качества сверхгладких поверхностей в процессе их изготовления. В работе [18] этот микроскоп был использован для визуального контроля поверхности специальных лазерных зеркал перед нанесением на них многослойного покрытия. При этом авторы пользовались очень простым критерием если на поверхности в дифференциальном интерференционном контрастном микроскопе не было видно сколько-нибудь значительной топографической структуры, то эта поверхность считалась пригодной для нанесения покрытия. Такой визуальный критерий, как впоследствии показали измерения по методу T1S, был эквивалентен отбору поверхностей с параметром а 0,5 нм.  [c.236]

В отличие от рассмотренных выше данная методика предназначена для контроля рельефа поверхности и точности позиционирования наблюдаемых объектов. Интерферограмма здесь также двухэкспозиционная, однако голограммы записываются не в разные моменты времени, а на разных длинах волн и Яз, близких по величине I— Я,2 I Я,1 2 (рис. 9.3, а). Восстановление интерферо-грамм осуществляется на одной из длин волн или Яз. В результате интерференции двух волновых фронтов, восстанавливаемых с двух указанных голограмм, происходит сравнение фазовых рельефов одного и того же объекта, но взятых в разном масштабе. Восстановленное изображение будет покрыто системой полос, отвечающих рельефу поверхности центр каждой светлой или темной полосы отвечает точкам, залегающим на одинаковой глубине относительно плоского волнового фронта, освещающего объект. Переход с одной темной полосы на рядом лежащую означает смещение по глубине объекта на величину  [c.213]

Дробеструйный наклёп применяется с целью повышения конструкционной прочности машиностроительных деталей, работающих при переменных нагрузках. Этим методом обработки иногда пользуются для предупреждения свойственного деталям из цветных сплавов растрескивания при их эксплоатации, особенно в условиях коррозионных сред. Реже дробеструйный наклёп применяется для повышения маслоудерживающих свойств обрабатываемой поверхности (подшипники скольжения и т. п.), для восстановления герметичности металлических сосудов путём устранения пористости их поверхностных слоёв и для контроля качества гальванических покрытий в отношении отслоя.  [c.892]

Электроискровой метод основан на пробое воздушных промежутков между касающимся поверхности сухого изоляционного покрытия щупом или щеточным электродом, подключенным к одному полюсу источника высокого напряжения, и самим защищаемым объектом (например, подземным резервуаром), подключенным к другому полюсу источника высокого напряжения непосредственно или через грунт при помощи заземлителя. На основе этого метода разработан ряд моделей электроискровых дефектоскопов. Так, на рис. 8.3 приведен общий вид электроискрового дефектоскопа КР0НА-2И, серийно изготовляемого АО ИНТРОСКОП и предназначенного для контроля эпоксидных, битумных, полимерных и эмалевых покрытий трубопроводов. Этот же прибор может быть использован для контроля защитных неэлектропроводящих покрытий других изделий любой конфигурации.  [c.133]

Выборочный контроль адгезии (прилипаемости) покрытий к металлу выполняется методом решетчатого надреза. На нелицевой поверхности делают 5... 7 параллельных надрезов до основного металла лезвием или скальпелем по линейке на расстоянии 1...2 мм в зависимости от толщины покрытия и столько же надрезов перпендикулярно первым. В результате образуется решетка из квадратов. Затем поверхность очищают кистью и оценивают по четырехбалльной системе.  [c.155]

Сплошность сцепления. На заводах-изготовителях для контроля качества гомогенной освинцовки используют переносные и стационарные рентгеновские установки. Контроль осуществляют как на стадии нанесения гомогенной освинцовки на поверхность стального листа, так и покрытия аппарата. Контроль проводят выборочно (отдельных участков) или всей поверхности. В условиях монтажной площадки для контроля сплощности сцепления щироко используют ультразвуковой метод. Его часто применяют также для определения толщины покрытия. Испытания проводят как импульсными, так и резонансными дефектоскопами. Сигналы фиксируются ло шкале прибора или на слух с использованием наушников. При хорошем сцеплении не происходит отражения сигналов от поверхности раздела сталь — свинец. Наличие сильных сигналов показывает на полное отсутствие связи обычно это имеет место, если площадь отслоения превышает размер головки прибора. При меньших размерах дефектов поступают слабые сигналы. Контур отслоения покрытия легко выявляется с помощью прибора. Испытания проводят с наружной стороны корпуса. Поверхность должна быть чистой от сварочных брызг, окалины, глубоких пор, трещин и других дефектов. Для обеспечения акустического контакта между искательной головкой и металлом его поверхность тщательно протирают ветошью и на нее наносят слой масла или вазелина.  [c.279]


Смотреть страницы где упоминается термин Контроль поверхностей и покрытий : [c.81]    [c.207]    [c.114]    [c.95]    [c.337]    [c.6]    [c.139]    [c.30]    [c.168]    [c.540]    [c.73]   
Сварка Резка Контроль Справочник Том1 (2004) -- [ c.483 , c.484 ]



ПОИСК



ИЗМЕРЕНИЕ ОТКЛОНЕНИЙ ФОРМЫ И РАСПОЛОЖЕНИЯ ПОВЕРХНОСТЕЙ ДЕТАЛЕЙ. КОНТРОЛЬ ТОЛЩИНЫ ПОКРЫТИЙ (10. Н. Орлов)

Контроль качества поверхностей и покрытий

Контроль качества при подготовке поверхности деталей к покрытию

Контроль поверхности

Контроль подготовки поверхности к нанесению защитных покрытий и консервации

Контроль покрытий

Покрытие поверхности



© 2025 Mash-xxl.info Реклама на сайте