Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Метод магнитопорошковый

Магнитный способ контроля, основанный на эффекте магнитной памяти металла, по своему принципу выполняет все функции традиционного метода магнитопорошковой де-  [c.214]

Детали турбоустановок, работающие при температуре ниже 450 °С, подвергают контролю на наличие трещин визуальным способом, а также методами магнитопорошковой, капиллярной (цветной) и ультразвуковой дефекто-  [c.343]

Магнитный контроль. Распределение магнитных силовых линий в случае намагничивания каким-либо образом сварных или паяных деталей изменяется в месте дефекта и может быть зафиксировано одним из следующих методов магнитопорошковым, магнитографическим, индукционным.  [c.551]


Метод магнитопорошкового контроля  [c.213]

Дальнейшее развитие методов магнитопорошковой дефектоскопии заключается в теоретических и экспериментальных исследованиях оптимальных режимов намагничивания различных марок сталей и создании универсальных и специализированных дефектоскопов [20, 23 и др.].  [c.13]

Оценку чувствительности метода магнитопорошкового контроля.  [c.270]

Обнаружение поверхностных дефектов в местах максимальных рабочих напряжений и радиусных переходах производилось методом магнитопорошковой дефектоскопии.  [c.63]

На рис. 5.25 представлена зависимость чувствительности магнитопорошкового метода от состояния порошка при силе намагничивающего тока в пределах 200.. 1500 Л. С ростом намагничивающего тока выявляемость дефектов, определяемая глубиной проникновения в металл, повышается. На глубине 2 мм могут  [c.138]

Магнитопорошковый метод смазывания. Метод использует магнитное поле для  [c.148]

Для выявления внутренних дефектов сварных соединений в Правилах регламентируются следующие методы неразрушающего контроля сварных соединений радиографический и ультразвуковой, капиллярный и магнитопорошковый кон 1 роль стилоскопированием и измерением твердости.  [c.49]

При изготовлении сварных сосудов и аппаратов в соответствии с требованиями ОСТ 26-291 цветная дефектоскопия является регламентируемым методом контроля качества сварных соединений. Цветной или магнитопорошковой дефектоскопии следует подвергать сварные швы, не доступные для осуществления контроля радиографическим или ультразвуковым методом (в частности, швов приварки штуцеров и труб внутренним диаметром менее 100 мм), а также сварные швы сталей, склонных к образованию трещин при сварке.  [c.219]

ГОСТ 21105. Контроль неразрушающий. Магнитопорошковый метод.  [c.270]

Основные преимущества магнитопорошкового метода — это его наглядность, высокая чувствительность к тонким мелким трещинам, простота исполнения и оперативность в получении результатов.  [c.194]

Капиллярный контроль применяют также для объектов, изготовленных из ферромагнитных материалов, если их магнитные свойства, форма, вид и месторасположение дефектов не позволяют достичь требуемой по ГОСТ 21105—75 чувствительности магнитопорошковым методом или магнитопорошковый метод контроля не допускается применять по условиям эксплуатации объекта.  [c.146]


Контроль неразрушающий. Магнитопорошковый метод 21120—75 Прутки и заготовки круглого, квадратного сечения. Ультразвуковой контроль эхо-методом  [c.474]

Из перечисленных методов только магнитопорошковый требует обязательного участия в контрольных операциях человека остальные методы позволяют получать первичную информацию в виде электрических сигналов, что делает возможным полную автоматизацию процессов контроля. Методы МП и МГ обнаружения не-  [c.6]

Чувствительность магнитопорошкового метода, определяемая минимальными размерами обнаруживаемых дефектов, зависит от многих факторов, таких как магнитные характеристики материала контролируемой детали, ее формы и размеров, характера (типа) выявляемых дефектов, чистоты обработки поверхности детали, режима контроля, свойств применяемого магнитного порошка, способа нанесения суспензии, освеш,енности контролируемого участка детали и т. п.  [c.33]

Уровни чувствительности магнитопорошкового метода  [c.34]

Применение измерителей глубины трещин совместно с другими методами контроля, например магнитопорошковым или капиллярным, позволяет повысить эффективность неразрушающих методов обнаружения и оценки трещин, особенно усталостных, возникающих в процессе Эксплуатации,  [c.179]

Установка позволяет осуществлять ультразвуковой контроль дефектов основного металла и сварных соединений с помощью ультразвуковых дефектоскопов, а также контроль поверхностных дефектов изделий капиллярным, магнитопорошковым и электромагнитным методами.  [c.336]

На рис. II показан РТК НК, в состав которого входят оптическая система ОТ-ЮМФ и промышленный робот ТУР-10. Данный комплекс может быть использован для полной автоматизации магнитопорошкового, капиллярного, радиографического и оптического методов контроля.  [c.347]

Магнитопорошковый метод основан на индикации частицами магнитного порошка магнитных полей рассеивания, возникающих над дефектом при намагничивании деталей из ферромагнитных материа.тов [121, 125]. В процессе нанесения на деталь частицы могут находиться во взвешенном состоянии в жидкостях (мокрый метод) или в воздухе (сухой метод). Этот метод очень чувствителен к состоянию поверхности детали. Поэтому его применение возможно к поверхностям при их высокой чистоте. Любые посторонние частицы влияют на контролируемую поверхность, понижая чувствительность метода. Могут даже появляться ложные сигналы в зоне контроля, если произошло прилипание порошка к поверхности.  [c.70]

Руководство по применению магнитопорошкового метода неразрушающего контроля изделий авиационной техники гражданской авиации // М. Воздушный транспорт, 1982.  [c.76]

В зависимости от способа регистрации магнитных полей магнитные методы подразделяют на магнитопорошковый, феррозондовый, магнитографический, индукционный и др. Для дефектоскопии в отрасли используют в основном первые два.  [c.30]

При магнитопорошковом методе для обнаружения магнитных полей рассеяния над дефектом на контролируемые участки деталей выносят ферромагнитные частицы, которые находятся во вз вешенном состоянии 30  [c.30]

Капиллярные методы контроля предназначены для обнаружения поверхностных и сквозных дефектов в объектах контроля, определения их расположения, протяженности и ориентации. Капиллярные методы позволяют контролировать объекты любых форм и размеров, изготовленных из черных, цветных металлов и других неферромагнитных материалов. Их применяют и для контроля деталей из ферромагнитных материалов, если их магнитные свойства, форма, вид и расположение дефектов не позволяют достичь требуемой чувствительности магнитопорошковым методом или если этот метод нельзя применять по условиям эксплуатации.  [c.35]

Магнитопорошковый и капиллярный методы. К работам по магнитопорошковой и капиллярной дефектоскопии допускаются специалисты, не имеющие медицинских противопоказаний и получившие удостоверения об успешной теоретической и практической подготовке в соответствии с утвержденной программой.  [c.42]


Метод магнитопорошковой дефектоскопии (с использованием порошков Люмагнор) позволяет получать достаточно точные результаты по длине трещины даже на резьбах меньше М12 (при применении суспензии с пониженной концентрацией порошка). Достаточно сложная технология контроля при применении магнитно-люминесцентных порошков не позволяет ее использовать для крупных шпилек и резьбовых концов штоков в связи со сложностью их демонтажа [5].  [c.195]

Особенности строения магнитной ленты вносят дополнительные требования к условиям магнитной дефектоскопии, которые необходимо учитывать при записи поля дефекта на ленту. Эти требования прежде всего определяются тем, что в отличие от процесса регистрации поля дефекта методами. магнитопорошковой или фер-розондовой дефектоскопии вектор намагниченности ленты существенно зависит от магнитной текстуры данной ленты, способа наложения внешнего поля, магнитной предыстории, а также анизотропии напряжений.  [c.39]

Подготовительные операции и проведение исследования методом магнитопорошковой дефектоскопии (МПД) выполнялись по ГОСТ 21105-87. Были выявлены дефекты, интерпретированные как области дефектов коррозионного растрескивания под напряжени-  [c.7]

Какими возможностями обладает магнитопорошковый метод по обнаруживанию дефектов нх характер, размеры, залегание  [c.167]

Второе важное направление развития средств диагностирования машин связано с применением автоматизированных систем обработки изображения (АСОИЗ). Очевидно, что наибольший объем диагностической информации на практике можно представить в двух- или трехмерном виде. Тра щци-онно и стабильно по этому пути развивается рентгенография, рентгенотелевидение, тепловидение, эндоскопия, оптическая и ультразвуковая голография, звуковидение, магнитопорошковые, магнитографические, капиллярные методы и средства контроля качества.  [c.225]

АЭ-метод выступает как самостоятельный, если по его оценке, полученной на основании критериального анализа зарегистрированной АЭ-информации от источников-де(()ектов, состояние объекта признается удовлетворительным. В противном случае для окончательной оценки привлекаются дополнительные методы НК. Наибольшую надежность оценки дает применение АЭ-метода в комплексе с такими т )адици-онными методами, как визуально-оптический, капиллярный, магнитопорошковый, ультразвуковой, рентгеновский. Эффективность комплексного контроля в этом случае определяется тем, что в задачу АЭ-метода входит выявление АЭ-активных источников и определение их координат или зон их расположения, обеспечивающих многократную минимизацию объемов последующего контроля традиционными методами. Последние дополняют предварительную АЭ-оценку состояния объекта сведениями о геоме фических параметрах и степени опасности выявленных дефектов (размерах, форме, ориентации и глубине залегания).  [c.264]

Магнитные методы контроля качества сварных соединений различают по способам регистрации полей рассеивания магнитопорошковый — поля рассеивания обнаруживают магнитным порошком, магнитографический — поля рассеивания записывают на магнитную ленту, феррозондо-вый — поля рассеивания регистрируют с помощью ферро-зондового преобразователя.  [c.192]

Магнитопорошковый метод. Вьишление дефектов проводится с помощью измельченного до состояния пудры (5... 10 мкм) магнитного порошка, в качестве которого применяют закись железа, стальные опилки, частицы кобальта, магнетитидр. (сухой метод), или с помощью суспензии — 60 г порошка на 1 литр керосина, трансформаторного масла или воды (мокрый метод). Так как магнитное поле над дефектом неоднородно, то на магнитные частицы порошка, попавшие в это поле, действует сила, стремящаяся затянуть частицы в место наибольшей концентрации магнитных линий (к полюсности), то есть к дефекту. При этом происходит намагничивание частиц и соединение их в цепочки с ориентацией по магнитным линиям поля дефекта. Далее цепочки и отдельные частицы движутся к месту расположения дефекта, где происходит их накопление и образование рисунка, по форме соответствующего контуру дефекта.  [c.193]

Средства вычислительной техники должны обеспечить повышение помехоустойчивости СНК и автоматизацию процессов расшифровки изображений де. ектных мест при контроле радиографическим, реитгенотелевизи-онным, магнитопорошковым, капиллярным и цветным методами.  [c.32]

Капиллярно-магнитопорошковый метод осноран на обнаружении комплексного индикаторного рисунка, образованного пенетрантом и ферромагнитным порошком, при контроле намагниченного объекта.  [c.147]

По способу получения первичной информации различают следующие методы магнитного вида контроля магнитопорошковый (МП), магнитографический (МГ), феррозондовый (ФЗ) эффекта Холла (ЭХ), индукционный (И), пондеромоторный (ПМ), магниторезисторный (МР). С их помощью можно осуществить контроль сплошности (методами дефектоскопии) (МП, МГ, ФЗ, ЭХ, И) размеров (ФЗ, ЭХ, И, ПМ) структуры и механических свойств (ФЗ, ЭХ, И).  [c.6]

Трудности определения дефектов магнитопорошковым методом связаны с возможностью перебраковкн из-за отложений порошка на так называемых ложных дефектах. К последним относятся различного вида магнитные неоднородности, например структурная полосчатость (карбидная, аустенитная, ферритная и т. п.). Она не является признаком брака и выявляется в виде тонких, четких скоплений валиков порошка, внешне похожих на волосовины. Такая струк-  [c.42]


Если контроль магнитопорошковым методом проводят регулярно, то целесообразно время от времени делать шлифы из бракованных деталей (в месте осаждения порошка) и сопоста-  [c.43]


Смотреть страницы где упоминается термин Метод магнитопорошковый : [c.189]    [c.138]    [c.15]    [c.212]    [c.219]    [c.350]    [c.350]    [c.31]   
Сварные конструкции (1991) -- [ c.138 ]



ПОИСК



Магнитная дефектоскопия, магнитопорошковый метод

Магнитопорошковые дефектоскопы (В.Ф. МужицКАПИЛЛЯРНЫЕ МЕТОДЫ КОНТРОЛЯ Клюев)

Магнитопорошковый и магнитографический методы

Метод контроля магнитопорошковый

Намагничивание при магнитопорошковом методе контроля — Способы

Особенности магнитопорошкового метода



© 2025 Mash-xxl.info Реклама на сайте