Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Силы трения режиме

Шар, к которому по форме приближаются многие твердые компоненты потоков газовзвеси, является плохо обтекаемым телом. Безотрывное обтекание сохраняется лишь при невысоких числах Rex, а положение точки отрыва пограничного слоя от поверхности зависит от режима обтекания, т. е. от Ret- Соответственно меняется и закон сопротивления, который оценивается коэффициентом аэродинамического сопротивления Сш, учитывающим как силы трения, так и разность сил давления в лобовой и кормовой частях шара.  [c.47]


Для расчетов механизмов, работающих при разных режимах и видах трения, важное значение имеет зависимость силы трения от скорости V K относительного движения трущихся поверхностей.  [c.228]

Энергия, подводимая к механизму в виде работы Ал движущих сил и моментов за цикл установившегося режима, расходуется на совершение полезной работы Л,,,, т. е. работы сил и моментов полезного сопротивления, а также на совершение работы А,, связанной с преодолением сил трения в кинематических парах и сил сопротивления среды А, = А,и +А,. Значения /4 1. и А, подставляются в это и в последующие уравнения по абсолютной величине.  [c.238]

II работы сил трения (Lrp). В газовой динамике часто пользуются упрощенной формой уравнения Бернулли, соответствующей режиму, когда отсутствует техническая работа (L = 0), нет гидравлических потерь (Ь р = 0) и запас потенциальной энергии не изменяется (z2 = zi). Для этого режима уравнение Бернулли  [c.27]

Возникающие в пограничном слое вихри проникают в центральную часть потока, составляющую турбулентное ядро течения, где происходит непрерывное и интенсивное перемещение отдельных частиц жидкости. Это вызывает образование дополнительных потерь напора, которые сопровождаются гашением кинетической энергии турбулентности, заключенной в вихрях. Следовательно, при турбулентном режиме движения жидкости в отличие от ламинарного режима кроме напряжения сил трения, обусловленных физическими свойствами жидкости, возникают еще д чол-нительные напряжения, вызываемые турбулентностью потоки.  [c.45]

Рис. 4.11. Кривая непрерывной записи силы трения при установившемся режиме трения Рис. 4.11. Кривая непрерывной записи <a href="/info/1987">силы трения</a> при установившемся режиме трения
В режиме установившегося трения сила трения не остается строго постоянной. Как показала непрерывная запись силы трения, она ко-  [c.100]

Как в случае ламинарного, так и в случае турбулентного движения стабилизация потока с характерным для этих режимов распределением скоростей по сечению наступает не сразу при входе потока в трубу. Во входном сечении трубы профиль скорости плоский, а эпюра имеет вид прямоугольника. Под действием сил трения образуется ламинарный пограничный слой, толщина которого растет по мере удаления от входного сечения и затем пограничные слои сливаются. При турбулентном режиме течения, при скоростях, соответствующих Re > 1-10, ламинарный слой разрушается и переходи в турбулентный пограничный слой с ламинарным подслоем. После смыкания пограничных слоев течение приобретает стабилизированный турбулентный характер (рис. 2.38). Начальный участок трубы, на котором устанавливается стаби-  [c.182]


В 3 и 6 были рассмотрены идеальные процессы. На практике при движении жидкостей или газов в каналах проявляется влияние свойства вязкости и внешних по отношению к потоку сил трения на стенках канала. Это влияние сильно возрастает для длинных каналов, в связи с этим характерно стремление делать короткие сопла. С другой стороны, при очень коротких соплах сильно нарушается равномерность распределения скоростей, возникают резко выраженные неравномерные пространственные движения с возможными отрывами потока от стенок и появлением карманов с противотоками. Не только основные размеры и соответствующий градиент давления, но и форма контуров канала оказывают большое влияние на распределение скоростей внутри канала. Необходимо также учитывать шероховатость стенок канала и в некоторых случаях тепловые потоки сквозь их стенки (например, в соплах ракетных двигателей движущийся газ имеет температуру порядка 3000° К). В сверхзвуковых потоках основным источником потерь и неравномерностей могут являться скачки уплотнения. Внутри сопла такие скачки могут образовываться в зависимости от некоторых геометрических свойств контура канала и независимо от формы канала на нерасчетных режимах истечения (см. 6). В связи с этим в значениях средних по сечению характеристик потока в сопле могут наблюдаться отклонения от значений, рассчитанных но идеальной теории, изложенной в 3 и 6.  [c.93]

Необходимо помнить, что работа турбины по режиму, когда через конденсатор не пропускается пар, т. е. когда весь пар идет в отбор, не допустима, так как вращение ротора в корпусе, через который не пропускается пар, приведет за счет сил трения между лопатками и рабочим телом к чрезмерному перегреву ротора из-за недостаточного отвода тепла и, как следствие, понижению механической прочности металла. Для отвода этого тепла через часть низкого давления должно обязательно пропускаться некоторое вентиляционное количество пара. Минимальное количество вентиляционного пара составляет 5—10% от расчетного, проходящего через часть низкого давления.  [c.368]

Из уравнения следует, что агрегат не может остановиться в момент отключения движущих сил, а будет продолжать двигаться, пока вся накопленная в нем кинетическая энергия не будет затрачена на преодоление сил, приложенных к нему в атой стадии движения. Так как в стадии останова скорость исполнительного органа уменьшается, то обычно в целях предупреждения брака приходится прекращать обработку изделий, поэтому в уравнении (9,14), , = 0. Следовательно, кинетическая энергия может быть погашена лишь работой силы вредных сопротивлений, Современные быстроходные агрегаты (машины) накапливают значительную кинетическую энергию, а работа вредных сопротивлений, в основном сил трения в кинематических парах, как правило, невелика. Если не применять специальных мер, то время выбега может быть очень большим. Современные прокатные станы, например, могут двигаться несколько часов после отключения двигателей. В целях сокращения времени выбега в состав агрегата (машины) включают специальные тормозные устройства или переводят электродвигатели на работу в тормозном режиме (электрическое торможение). В этом случае уравнение движения имеет вид  [c.307]

Выполняя расчеты, нужно иметь в виду, что величина коэффициента трения почти в равной мере зависит от трех групп факторов, которые определяются а) материалом трущихся тел, характером смазки и видом пленки на поверхности б) конструкцией кинематической пары-размера поверхности, геометрическим очертанием в) режимом работы —температурой, скоростью, нагрузкой все это обусловливает изменения, протекающие как в материале, так и в геометрическом очертании неровностей. Коэффициент трения можно считать постоянным, а силу трения — прямо пропорциональной нормальному давлению только в определенном диапазоне скоростей и нагрузок. С увеличением скорости движения коэффициент трения в большинстве случаев уменьшается (до определённого предела) с возрастанием удельного давления и увеличением времени предварительного контакта соприкасающихся тел коэффициент трения возрастает.  [c.52]


Таким образом, под коэффициентом трения подшипника в любом режиме подразумевают безразмерный коэффициент пропорциональности между нагрузкой на опору и окружной силой сопротивления вращению шипа (цапфы). Окружная сила представляет собой сумму элементарных касательных сил трения, распределенных по всей поверхности скольжения.  [c.329]

Для оценки работоспособности и надежности подшипников, работающих в режиме несовершенной смазки, служат среднее давление на трущихся поверхностях ртИ удельная работа сил трения рщо, где у — окружная скорость поверхности цапфы.  [c.315]

Другим примером выявления областей допустимых режимов работы изделия может служить анализ работы прецизионных поступательных пар трения (столов, суппортов, ползунов), работающих при малых скоростях. Возникающие в паре силы трения могут привести к возникновению релаксационных колебаний, при которых работа механизма будет неустойчивой. При данных характеристиках фрикционного контакта на переход в область неустойчивого трения основное влияние оказывают жесткость привода С и скорость движения v (рис. 166, б). Их предельные значения С р и Unp определяют запас устойчивости /Су > 1 по  [c.525]

При всяком отклонении режима трения от заданного система регулирования обеспечивает соответствующую подналадку и стабилизацию сил трения. Это существенно повышает надежность работы системы и в первую очереДь улучшает параметры точности перемещения и установки в широком диапазоне скоростей, нагрузок и температур.  [c.569]

Шероховатость поверхности дает информацию о режиме эксплуатации и об условиях нарушения этого режима, она является зеркалом , отражающим условия эксплуатации. От шероховатости поверхности зависят величина силы трения, износостойкость подвижных сочленений. Кроме того, шероховатость определяет ряд важнейших служебных качеств подвижных и неподвижных сопряжений машин, а именно электропроводность соединений, газопроницаемость, толщину масляной пленки подвижного сопряжения, гидравлическое сопротивление зазора, тангенциальную и нормальную контактную жесткость стыков и многое другое.  [c.3]

Пара трения с фиксируемой исходной шероховатостью А более твердого контртела прирабатывается при фиксированных режимах нагрузки, скорости скольжения, силы трения, температуры. Критерием оценки приработки является установление постоянных силы (коэффициента) трения и температуры, а также полное обновление исходной шероховатости, что наблюдается по истечении значительного времени истирания трущихся поверхностей. После окончания приработки с более твердой поверхности снимается профилограмма в направлении, перпендикулярном к направлению движения. Кроме того, определяется критерий Ра по ГОСТу 2789—59.  [c.61]

Критерий теплостойкости предусматривает обеспечение нормального теплового режима работы опоры (без чрезмерного нагрева). При вращении цапфы вала механическая энергия трения превращается в тепловую, которая через поверхности деталей опоры и смазку отводится из зоны трения и рассеивается в окружающей среде. Интенсивность тепловыделения пропорциональна работе сил трения, а отвод теплоты — площади поверхности трения подшипника. Исходя из этого, нормальный режим трения считается обеспеченным, если соблюдается условие  [c.408]

Учитывая влияние силы трения (смазки) на характер распределения пластической деформации по глубине, его исследование проводилось в условиях сухого трения, трения со смазкой часовым маслом и дисульфидом молибдена [105]. Процесс трения осуществлялся при скольжении индентора из стали ШХ-15 в одном направлении под нагрузкой 15 кгс по отожженным образцам из полированной стали 45. Число проходов индентора соответствовало установившемуся (по коэффициенту трения) режиму испытания (рис. 21). Зависимость коэффициента трения от числа воздействий индентора при смазке дисульфидом молибдена аналогична зависимости в условиях трения со смазкой часовым маслом (см. рис. 21), но его абсолютное значение несколько меньше — порядка 0,1.  [c.45]

Обрабатываемая поверхность детали подвергается воздействию нормальной сжимающей силы и силы трения, действующей в направлении линии среза. Нормальная сила будет вызывать сжатие по направлению своего действия, а сила трения — растяжение поверхностных слоев, расположенных позади режущей кромки. Указанные силы вызывают пластическую деформацию в поверхностном слое детали, интенсивность которой тем больше, чем ближе слой металла к поверхности. Соотношение и величина этих сил зависят от режимов обработки и геометрии инструмента и других технологических факторов.  [c.113]

Приведенные выше формулы справедливы для тех режимов движения, у которых Ях 1 и Яа 1. Далее составим в общих чертах алгоритм решения задачи расчета амплитудно-частотно-массовой характеристики рассматриваемой системы в случае, когда отсутствуют силы трения в системе.  [c.143]

Решение полученных уравнений (1) — (3), (5) выполнено на ЭВМ. Рассмотрено функционирование стана в режимах разгона и квазиустановившегося движения, когда сила сопротивления моделируется внешней силой трения. Особенностью первого этапа является малое изменение параметров системы и большая скорость изменения внешних сил, особенностью второго этапа — значительное изменение параметров системы и периодическое кинематическое возмущение [3]. Анализ полученных решений показывает (рис. 1), что происходит нарастание коэффициентов динамичности в участках от тягового органа (1) к приводному двигателю 6). С уменьшением времени разгона и ростом пика усилия волочения коэффициенты динамичности сильно увеличиваются.  [c.134]


Зависимость (10.5) для силового передаточного отношения используется при осреднении сил трения по скорости в пределах рассматриваемого режима, что часто является вполне удовлетворительным допущением [20].  [c.277]

Потери в зацеплении вызываются силами трения между зубьями. Силы трения в режиме полужидкостной смазки растут с увеличением шероховатости поверхности, с уменьшением вязкости масла и с умень-1иением скорости. Влияние этих факторов на силу трения в значительной степени связано с их влиянием на несущую способность масляного клина между зубьями.  [c.198]

Исходные данные перечислены в начале 4.6. Так как станок запускается в режиме холостого хода, т. е. когда нет процесса резания, то вся энергия электродвигателя расходуется на увеличение кинетической энергии агрегата и на преодоление потерь трения. Наиболее сил1)Но трение проявляет себя между ползуном 5 и неподвижной направляюигей. Силу трения / , в этой поступательной паре в первом приближении можно принять постоянной (рис. 4.16, б). Трение в других кинематических парах учитывать не будем, поскольку оно относительно слабо выражено. Точно так же опустим влияние сил тяжести. Механическая характеристика асинхронного электродвигателя /Vl(iOp i) изображена на рис. 4.16, в. Пусть начальные условия движения таковы при t = имеем ((, = =  [c.161]

В дальнейшем остановимся только на элементарном изложении простейших вопросов теории неустановившихся режимов примеии-гельпо к условиям работы гидростанций — определении максимальных значений давле-ппГц возникающих в простых напорных трубопроводах, и наибольших амплиту.т колебаний масс в простейших уравнительных резервуарах, минуя ири этом вопросы устойчивости колебаний масс, учета сил трения ири расчетах гидравлического удара на гидроэлектростанциях с очень длинными трубопроводами и т. и.  [c.135]

Это уравнение содержит две неизвестные функции Н , t) и V (s, t) уклон трения, как упоминалось, в первом приближении можно определить по формулам установившегося режима. В результате расчетов и экспериментов получено, что влияние сил трения практически существенно только при достаточно больших длинах труб, и во многих случаях значением можно пренебречь. Кроме того, при рассмотрении гидравлического удара в металлических трубах или в трубах из другого достаточно жесткого материала (например, из железобетона) можно не учитывать конвективный член vig) dvtds). Действительно, изменение скорости по длине трубы dvids может быть отлично от нуля только вследствие сжимаемости жидкости или деформируемости стенок. И та и другая невелики. Но локальное ускорение dvidt при гидравлическом ударе может быть сколь угодно большим, если изменение положения затвора производится достаточно быстро. Поэтому, как правило,  [c.195]

Чем больше силы трения в реальной жидкости, тем больше, при равных прочих условиях, потери напора hj-. Между силами трения и потерями напора hf (т. е. работой сил трения) существует, естественно, определенная зависимость. Зная распределение в потоке напряжений х, а также скоростей и (дающих нам величину перемещений частиц жидкости), мы могли бы подсчитать работу сил трения и тем самым определить потери напора. Однако такая задача является весьма трудной, в частности, в связи с тем, что поле скоростей и нам часто бывает неизвестным. Здесь приходится идти особыми приближенными путями, освещаемыми ниже. При этом, рассматривая вначале простейший случай движения жидкости — установившееся равномерное движение (местные потери отсутствуют) — мы пользуемся особым уравнением, которое дает связь только между силами трения и потерями напора. Это достаточно точное уравнение принято называть основным уравнением установившегося равномерного движения жидкости (см. 4-2). На основании этого уравнения, а также на основании законов Ньютона о силах внутреннего трения (см. 4-3), мы далее и устанавливаем необходимую нам зависимость, связывающую потери напора и скорости движения жидкости. Этот вопрос достаточно хорошо решается теоретически для простейших случаев ламинарного движения (см. 4-4 и 4-5). В случае турбулентного режима приходится прибегать к использованию некоторых экспериментальных коэффищ1ентов, вводимых в теоретический анализ.  [c.130]

Основанием для использования непрерывной модели могут служить рассмотренные выше физико-химические процессы при трении. Принимая во внимание, что долговечность трибосистемы определяется характеристиками трения и изнашивания при установивн1емся режиме трения (режиме работы узла трения), ниже обосновывается и рассматривается модель, дающая описание процесса в установившемся режиме трения, т.е. в стационарном термодинамическом состоянии. При установившемся режиме трения, как было показано выше, поверхность металлической детали покрыта полимерной пленкой фрикционного переноса, которая прочно удерживается силами адгезионного взаимодействия. Образование физических и химических связей между полимером и металлом способствует реализации термодинамических процессов переноса энергии и вещества между этими двумя фазами одной термодинамичес-  [c.114]

В нашем исследовании мы пренебре1 ли силами трения в сочленениях механизма. Так как в качестве примера мы рассмотрели весьма быстроходный механизм, то, вообще говоря, следовало бы учесть, по крайней мере, те силы трения, которые возникают вследствие действия центробежных сил в подшипниках сателлитов. При относительной угловой скорости сателлитов, близкой к нулю, режим трения в их подшипниках становится близким к режиму сухого трения, и коэффициент трения оказывается довольно большим, вследствие чего при малой  [c.273]

Рассмотрим, например, возможные режимы колебаний иолзуна, прижатого к поверхности, движущейся с постоянной скоростью (см. рис. 43, а) при условии, что зависимость силы трения Ft от скорости скольжения V = Vo—i представлена экспериментальной кривой (рис. 44, а), на которой можно отметить значение скорости скольжения ь т, соответствующее минимуму силы трения. Если сила трения уменьшается с увеличением скорости скольжения, то характеристику силы трения на этом участке будем называть падающей, если увеличивается, то возрастающей. Для выявления особенностей режимов движения ползуна достаточно заменить реальную характеристику силы трения ее приближенным выражением, получаемым при линеаризации участков с возрастающей и убывающей силой трения (рис. 44, б).  [c.108]

Уравнения (13.15) и (13.16) отличаются знаком члена, содержащего 2. Если эти уравнения считать уравнениями возмущенного движения, то по знакам коэффициентов их характеристических уравнений можно судить об устойчивости движения. При возрастающей характеристике силы трения все коэффициенты характеристического уравнения положительны. Этого признака (см. 10) достаточно для установления асимптотической устойчивости систем, движение которых описывается уравнениями не выше второго порядка. При падающей характеристике возможно получение неустойчивых режимов, так как в характеристическом уравнении имеется отрицательный коэффициент. Такое же заключение можно сделать, решая уравнения (13.15) и (13.16). Для этого введем безраз-.мерное перемещен1 е у = г1гс. Тогда уравнение (13.15) принимает вид  [c.109]


В предыдущих параграфах было показано, что скачок силы трения при переходе от трения покоя к трению скольжения мо-< жет вызвать автоколебания ползуна, движущегося с трением по направляющим, или тормозной колодки, прижатой к движущей ся поверхности. При исследовании движения ползуна или ко- лодки предполагалось, что сила тренн-я не зависит от скорости скольжения. Теперь покажем, что учет зависимости силы трения от скорости скольжения позволяет выявить такие режимы движения, которые не обнаруживаются при постоянной силе трепия.  [c.226]

Вращешю цапфы в подшипнике противодействует момент сил трения. Работа трения нагревает подшипник и цапфу. От поверхности трения тепло отводится через корпус и вал, а также уносится смазывающей жидкостью. При установившемся режиме работы температура подшипника не должна превышать некоторой предельной величины, допускаемой для данного материала подшипника и сорта смазки. В противном случае понижается вязкость масла и увеличивается вероятность заедания цапфы в подшипнике, что в конечном результате приводит к выплавлению вкладыша. Перегрев подшипника является основной причиной его разрушения. С величиной работы трения связан также износ вкладыша и цапфы, нарушающий правильность работы механизма.  [c.320]

Очень сложен процесс теплоотдачи при конденсации в горизонтальных трубах слабо движущегося пара, когда необходимо учитывать и силы тяжести, и силы трения. Эта задача приближенно решалась, в Л. 25] и других работах. Полученные формулы достаточно сложны, так как приходится учитывать то обстоятельство, что конденсат течет как вдоль трубы, так и по ее окружности. При этом режимы течения пара и конденсата на различных участках трубы могут быть неодина-  [c.282]

Прямое наблюдение периодичности образования и разрушения вторичных структур при граничном трении по интенсивности износа, величинам силы трения и ЭДС, возникающей при трении, было выполнено в работе [79]. Исследования проводились на прецизионной машине на образцах с минимально возможной площадью касания при непрерывной регистрации износа, силы трения и трибо-ЭДС. При установившемся режиме изнашивания отчетливо наблюдается периодическое изменение коэффициента трения и ЭДС. Длительность цикла образования и разрушения вторичных структур изменяется в зависимости от скорости скольжения и нагрузки. Влияние внешних параметров на количественные характеристики периодических кривых отмечается и в работах [76 — 78]. Анализ этих результатов свидетельствует о том, что изучение периодического характера структурных изменений является реальным путем для создания новых методов оценки износостойкости фрикционных материалов. С позиций представлений об усталостном разрушении поверхностей трения периодический характер структурных изменений открывает новые возможности для определения основных характеристик усталостного процесса числа циклов до разрушения и действующих на поверхности напряжений и деформаций. Этот сложный вопрос является весьма актуальным для дальнейшего развития усталостной теории износа, поскольку существующие методы оценки указанных параметров имеют определенные недостатки. Так аналити-  [c.30]

Периодический характер структурных изменений, впервые выявленный в работе [76], затем был зафиксирован в целом ряде работ для различных условий трения [26, 77, 78]. Большинство авторов связывают такой вид зависимости с периодическим разрушением поверхностного слоя и отмечают зависимость времени (числа циклов, пути трения), за которое материал проходит всю стадию от упрочнения до разрушения, от внешних условий трения. Проявление периодического характера процесса обнаружено но изменению микро- [76] и макронапряжений [77], электросопротивления [103], величины блоков [78], микротвердости [26, 122]. Соответственно и внешние характеристики трения, такие, как коэффициент трения и интенсивность износа, также могут периодически изменяться. Для тяжелых условий трения периодический характер изменения износа может быть выявлен обычным весовым методом [26, 136], для более легких режимов выявление периодического характера изменения силы трения стало возможным только путем прецизионных измерений [79]. Сказанное выше в равной степени относится как к основному материалу (большинство исследований выполнено на сталях), так и к пленкам вторичных структур, обра-зуюш ихся в процессе трения. При тяжелых режимах работы, связанных с повышением температуры на контакте (например, при нестационарном тепловом нагружении), наблюдается периодическое изменение структуры, обусловленное не только действием повторного циклического нагружения, но и циклическим изменением температуры трения, приводяш им к фазовым превращениям на контакте, которые также носят циклический характер. В результате наблюдается четко выраженная периодичность изменения износа от числа торможения [136].  [c.104]


Смотреть страницы где упоминается термин Силы трения режиме : [c.273]    [c.449]    [c.211]    [c.362]    [c.101]    [c.117]    [c.211]    [c.219]    [c.108]    [c.111]    [c.434]    [c.165]    [c.108]   
Подшипники скольжения расчет проектирование смазка (1964) -- [ c.238 , c.246 ]



ПОИСК



Режимы трения

Сила трения

Трение сила трения



© 2025 Mash-xxl.info Реклама на сайте