Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Смазочные Выбор

Масла смазочные — Выбор для глобоидныя передач 258, 259  [c.466]

Выбор смазочного материала основан на опыте эксплуатации машин. Принцип назначения сорта масла следующий чем выше контактные давления в зубьях, тем  [c.134]

Выбор смазочного материала и способа смазывания деталей передач и подшипников качения.  [c.358]

Выбор смазочного материала основан на опыте эксплуатации машин.  [c.172]


Выше приведены рекомендации по выполнению отдельных этапов курсового проекта, а также краткая характеристика вариантов конструктивных решений. При вьшолнении курсового проекта из всего многообразия вариантов необходимо выбрать один, оптимальный. Число возможных сочетаний типов подшипников, схем их установки, способов регулирования, конструкций крышек подшипников, стаканов, зубчатых или червячных колес, червяков, смазочных и уплотнительных устройств очень велико. Это многообразие создает при вьшолнении проекта определенные трудности. Для облегчения выбора решений в настояшей главе приведены варианты типовых конструкций опорных узлов зубчатых и червячных передач, состоящих из валов с установленными на них деталями. Напомним, что сборку валов с сопряженными деталями вьшолняют, как правило, вне корпуса изделия.  [c.189]

Выбор смазочных материалов и системы смазывания. ............ 32  [c.395]

Результаты расчета и выбор посадки. Как видно из схемы алгоритма, для каждого значения относительного зазора ( ) па печать выводятся величины минимальной толгцины смазочного слоя средней температуры масла  [c.393]

Выбор между маслом и воском в качестве связующего зависит, во-первых, от требуемой продолжительности защиты (воск обычно обеспечивает больший срок службы покрытия) и, во-вторых, от того, насколько легко удалить смазку при пуске защищаемого изделия в работу (масло легче стереть или растворить в растворителе). Толщину смазочного слоя варьируют от 0,1 до 2,5 мм и более.  [c.272]

Кинематические пары во многом определяют работоспособность и надежность машины, поскольку через них передаются усилия от одного звена к другому в кинематических парах, вследствие относительного движения, возникает трение, элементы пары находятся в напряженном состоянии и в процессе изнашивания. Так, например, при работе механизма ДВС, изображенного на рис. 2.1, а, изнашиваются гильза цилиндра и поршневые кольца, коренная А и шатунная В шейки коленчатого вала / и т. д. Поэтому правильный выбор вида кинематической пары, ее геометрической формы, размеров, конструкционных и смазочных материалов имеет большое значение при проектировании машин.  [c.19]

Для правильного выбора конструкционных и смазочных материалов, мест подвода смазочного материала и расчета ожидаемого износа рассмотрим форму и величину поверхности трения и распределение износа по ней для различных кинематических пар, что зависит от формы элементов и условий работы пары.  [c.248]


Смазка подшипников качения, характеристики смазочных материалов и методы выбора их для подшипников качения приведены в гл. 15.  [c.416]

ТВЕРДЫЕ СМАЗКИ И ВЫБОР СМАЗОЧНОГО МАТЕРИАЛА  [c.742]

Рекомендации по выбору смазочного материала заключаются в основном в определении вязкости смазкн в зависимости от контактного  [c.742]

Твердые смазки и выбор смазочного материала  [c.745]

Смазывание подшипников. Смазывание подшипников скольжения предназначено для снижения потерь мощности на трение, предохранения от коррозии, уменьшения износа и увеличения отвода теплоты, образующейся при работе подшипника. Для нормальной работы подшипников исключительно важно создать надежную смазку, что обеспечивается рациональным выбором и подводом к подшипнику смазочного материала.  [c.306]

Подшипники качения. В качестве смазочных материалов для опор с подшипниками качения применяются жидкие масла и консистентные смазки. Из жидких масел наиболее широко применяются индустриальные 12, 30, 45 и турбинные масла. Их следует применять при высоких окружных скоростях (о > 5 м сек), причем с увеличением скорости вращения следует выбирать масло с меньшей вязкостью. При выборе масел нужно учитывать изменение их вязкости в зависимости от температуры. Так, для подшипников, работающих при отрицательных температурах, необходимо назначать жидкие масла, у которых точка застывания на 15—20° ниже рабочей температуры.  [c.478]

В качестве смазочных материалов в машинах применяются жидкие минеральные масла, густые (консистентные), а в ряде случаев и твердые смазки. Преимущественное распространение получили минеральные масла, которые хорошо подходят для смазки ответственных быстроходных сопряжений и позволяют более легко осуществлять централизованную смазку. Выбор того или иного сорта смазки зависит в первую очередь от скоростей относительного скольжения и нагрузок, действующих в сопряжениях. При прочих равных условиях, чем выше скорость относительного скольжения и чем меньше давление в сопряжении, тем меньшей вязкостью должно обладать масло.  [c.250]

Часто выбор сорта смазки осложняется тем, что в машине имеется большое разнообразие пар трения, работающих при различных скоростях и нагрузках. Применение разных смазок неоправданно усложнило бы конструкцию смазочной системы и затруднило эксплуатацию машины. Поэтому стремятся применить одну систему смазки для всей машины или для одного узла (в сложных машинах).  [c.250]

При работе смазочных систем существенное значение имеет надежная фильтрация смазки, чтобы инородные частицы и продукты износа при циркуляции смазки не попадали на трущиеся поверхности. Выбору сорта смазки, конструкции смазочных систем, а также теоретическим основам смазки посвящены многие научные труды.  [c.251]

Хотя радиационно-химический выход G является полезной характеристикой относительной радиационной устойчивости тех органических соединений, которые могут быть основными компонентами топлив и смазочных материалов, технологов интересуют главным образом общие изменения физических и химических свойств, которые могут быть результатом радиационного воздействия. По этой причине излучение можно рассматривать как дополнительный нежелательный фактор, сравнимый с более известным термическим и окислительным воздействием среды. Следовательно, инженерная практика диктует необходимость защиты топлива и смазочных материалов от излучения, а в тех случаях, когда это неосуществимо, модификации имеющихся или разработки новых материалов с адекватной радиационной стойкостью. При выборе топлив и смазочных материалов для использования в условиях облучения возникает три важных вопроса обладают ли обычные материалы адекватной радиационной стойкостью можно ли увеличить их стабильность за счет незначительных изменений состава или введения специальных присадок и каковы перспективы синтеза новых материалов, имеющих удовлетворительные характеристики в отсутствие излучения, но обладающих повышенной радиационной стойкостью.  [c.115]

Учение о трении и изнашивании машин состоит из следующих разделов [257] 1) трение и изнашивание материалов, 2) жидкостная и газовая смазка подвижных сопряжений деталей машин, 3) трение, изнашивание и смазка машин, 4) оценка, выбор и применение смазочных материалов.  [c.46]


Наконец, последний раздел, относяш ийся к рассматриваемой специальности, охватывает методы оценки свойств современных смазочных материалов, их выбора и применения, улучшения и восстановления.  [c.47]

Один из практически важных вопросов, связанных с обеспечением минимального износа трущихся деталей, —оптимальный выбор сочетания материалов для них. К материалам деталей предъявляются также требования конструктивной прочности, жесткости и технологичности, поэтому задача оптимального сочетания материалов трущихся поверхностей часто решается путем нанесения на одну из деталей слоя иного материала (металлического или неметаллического), нри котором в наибольшей мере удовлетворяется требование антифрикционности данного сопряжения. Громадное влияние на трение и изнашивание в условиях несовершенной смазки оказывают свойства смазочных материалов, поэтому вопрос антифрикционности включает также учет взаимодействия трущихся материалов со смазкой. При отсутствии смазки трение и изнашивание зависят от свойств газовой среды и степени вакуума. Работы по изучению трения и изнашивания в связи с выбором материалов для трущихся деталей проводились в разных направлениях.  [c.51]

Наиболее совершенная и экономичная смазка металлургических машин достигается при применении наиболее совершенного смазочного оборудования, наличии надлежащих смазочных канавок, при правильном расположении отверстий для подвода и отвода смазки и правильном выборе смазочного материала.  [c.14]

Для обеспечения надлежащей смазки машин, работаюш,их в различных эксплуатационных и климатических условиях, создан широкий ассортимент смазочных масел. Из этого ассортимента для циркуляционных систем смазки применяются только масла высокой очистки, обладаюш,ие высокой химической и термической стабильностью и содержащие минимальное количество смолистых веществ, кокса, золы и механических примесей. Однако хорошо очищенные минеральные масла обладают пониженной смазочной способностью по сравнению с неочищенными маслами, так как в процессе очистки из них удаляются активные углеводороды, присутствие которых в маслах значительно повышает их смазочную способность, являющуюся весьма ценным свойством всех смазочных масел и в особенности масел, применяемых для смазки тяжелонагруженных и передающих ударные нагрузки механизмов. По мере возрастания удельных давлений и уменьшения скоростей скольжения для улучшения смазки и приближения ее к условиям жидкостного трения обычно приходится применять смазочные масла более высокой вязкости и более высокой липкости с целью увеличения толщины смазочного слоя, разделяющего поверхности трения и препятствующего возникновению сухого трения, ускоряющего износ. Для повышения смазочной способности и химической стабильности масел, применяемых в циркуляционных системах, служат специальные присадки к маслам. В качестве присадок используются жирные кислоты, жиры, а также синтетические вещества — продукты соединения жиров и масел с серой. Так как присутствие в масле воды понижает его грузоподъемность и ускоряет коррозию трущихся поверхностей, то смазочные масла должны обладать способностью быстро отделяться от попадающей в них воды и не давать с ней стойких эмульсий. С этой точки зрения очищенные минеральные масла обладают несомненным преимуществом перед неочищенными. На выбор смазочного материала оказывают влияние условия работы трущихся пар скорость, температура, нагрузка, возможность загрязнения, а также способ смазки. Вследствие этого для смазки оборудования современных металлургических цехов обычно приходится применять несколько сортов смазочных масел, заливаемых в резервуары циркуляционных систем и в картеры редукторов (при картерной смазке).  [c.23]

Трудную проблему представляет выбор смазочного материала для подшипников жидкостного трения рабочих клетей прокатных станов. Принимая во внимание высокие нагрузки, действующие на валки, трудно обеспечить жидкостное трение, хотя для этого требуется очень малая толщина масляной пленки вследствие незначительных радиальных зазоров и весьма высокой чистоты обработки рабочих поверхностей цапфы и вкладыша. Для смазки этих подшипников обычно применяются хорошо очищенные масла различной вязкости. При выборе масла для подшипников жидкостного трения рабочих клетей нужно принимать во внимание то, что в масло часто попадает большое количество воды и мелкая окалина, особенно после длительной работы стана, когда уплотнения подшипников сработаются.  [c.24]

При помощи фильтров из масла удаляются твердые тела четырех различных типов, а именно абразивные частицы, волокнистые материалы и желеобразные липкие включения. Абразивные частицы являются твердыми телами неправильной формы. Присутствуя во взвешенном состоянии в движущемся масле, абразивные частицы царапают металлические поверхности и вызывают их износ. Липкие и желеобразные примеси не являются абразивными, но они часто закупоривают смазочные каналы и прекращают доступ масла к поверхностям трения. Кроме того, они собирают (адсорбируют) абразивные частицы. Среди волокнистых материалов чаще всего встречаются хлопчатобумажные волокна. Они затрудняют поток масла, вызывают закупоривание каналов и помогают накоплению абразивных и липких материалов. Обычно в масле присутствуют все перечисленные выше примеси, что затрудняет выбор соответ-  [c.34]

ОПРЕДЕЛЕНИЕ ПРОДОЛЖИТЕЛЬНОСТИ РАБОЧЕГО ЦИКЛА И ВЫБОР СМАЗОЧНЫХ ПИТАТЕЛЕЙ  [c.150]

Выбор смазочного мазерпала основан на опыте зксплуатации машин. Принцип назначения сорта масла сле-дуюпгий чем выше окружная скорость колеса, тем меньше должна быть вязкость масла, чем вын]е контактные давления в зубьях, тем большей вязкостью должно обладать масло. Поэтому требуемую вязкость масла определяют в зависимости от контактного напряжения и окружной скорости колес. Предварительно определяют окружную скорость, затем по скорости и контактным напряжениям по табл. 11.1 находят требуемую кинематическую вязкость и по табл. 11.2 марку масла.  [c.148]


Простейшая подшипниковая опора состоит из вала, корпуса и разделяющего их подшипника. В зависимости от назначения опоры и предъявляемых к ней требований спа может содер кать крышки, детали крепления внутреннего и назужного колец подшипников на валу и в корпусе, смазочные и уплогняющие устройства. Основным элементом опоры является подшипник, определяющий не только работоспособность самой опоры, но и всей машины. Одиако надежность опоры зависит не только ст правильности выбора подшипника по режиму нагружения, частоте вращения, долговечности и некоторым другим параметрам, отраженным в расчетных формулах. Имеются много факторов, которые из-за их количественной неопределенности в этих формулах не учтены, но на работоспособность подшипника могут оказывать реи[ающее влияние.  [c.112]

Одним из важнейших средств обеспече гпя нормальной работы подшипников наряду с правильным выборам типа и сорта смазки является создание надежных уплотнений п( дшипникового узла. Выбор конкретного тина и конструкции унлсгнения определяется основными условиями необходимой степень о герметизации, определяемой назначением проектируемого издел 1я и допустимой утечкой масла видом и свойством смазочного ма гериала окружной скоростью вала в месте уплотнения рабочей емпературой подшипникового узла параметрами окружающей ср ды допустимой потерей на трение в уплотнении расположением вг ла доступностью осмотра, трудоемкостью замены и др.  [c.133]

Расчет и выбор посадок с зазором в подшипниках скольжения. Наиболее распространенным типом ответственных подвижных соединений являются подшипники скольжения, работающие со смазочным материалом. Для обеспечения наибольшей долговечности необходимо, чтобы при работе в установившемся режиме износ подшипников был минимальным. Это достигается при жидкостной сма.зке, когда поверхности цапфы и вкладыша подшипника полностью разделены слоем смазочного материала. Наибольшее распространение имеют гидродинамические подшипники, в которых смазочный материал увлекается враш,ающейся цапфой в постепенно сужаю-ш,ийся (клиновой) зазор между цапфой и вкладышем подшипника, в результате чего возникает гидродинамическое давление, превышающее нагрузку на опору и стремящееся расклинить поверхности цапфы и вкладыша. При этом вал отделяется от поверхности вкладыша и смещается по направлению вращения. Когда вал находится (штриховая линия на рис. 9.5) в состоянии покоя, зазор S = D — d. При определенной частоте вращения вала (остальные факторы постоянны) создается равновесие гидродинамического давления и сил, действующих на опору. Положе1ше вала в состоянии равновесия определяется абсолютным е и относительным "/ = 2e/S эксцентриситетами. Поверхности цапфы и вкладыша подшипника при этом разделены переменным зазором, равным /i ,m в месте их наибольшего сближения и Апих = S —/гп,т на диаметрально противоположной стороне. Наименьшая толщина масляного слоя /г и, связана с относительным эксцентриситетом % зависи.мостью  [c.212]

В уравнения (9.11) и (9.12) следует подставлять значения динамической вязкости масла (Xj и fi,, которые соответствуют средним температурам смазочного слоя соответственно при SmmF и SmaxF-определения значений средних температур проводят тепловой расчет [131, который целесообразно выполнять на ЭВМ, используя метод последовательных приближений. Рекомендуется упрощенный метод выбора посадок для подшипников скольжения по относительному зазору I]), определяемому по эмпирической формуле [131  [c.215]

При выборе смазочного материала необходимо учитывать условия эксплуатации смазываемых поверхностей (тепловые, кинематические и силовые условия в контакте). К ним относятся давление, скорость качения и скольжения, температура, материалы поверхностей, среда, в которой работает узел трения. Для прямозубых цилиндрических и конических передач смазочный материал и способ подвода смазки выбирают в зависимости от типа передачи и окружной скорости. Пластичные смазки применяют чаще всего в открытых передачах при окружной скорости меньше 4 м/с, а также в условиях, где применение жидких смазочных материалов невозможно. Для промышленных закрытых передач с окружной скоростью до 12—15 м/с применяют обычно смазку окунанием колес в масляную ванну на глубину при мерно 0,75 от высоты зуба. Объем масляной ванны рассчитывают в за висимости от передаваемой мощности (примерно на 1 кВт 0,25—0,75 л) При окружной скорости свыше 15 м/с для снижения потерь на преодо ление сопротивлений рекомендуют применять струйную циркуляционную смазку. При этом необходимо учитывать, что вязкость масла должна несколько понижаться с увеличением окружной скорости.  [c.742]

Верхнюю границу рекомендуется использовать при ударных нагрузках, температуре окружающей среды выше 25 С и закаленных колесах из стали с добавками никеля и хрома нижнюю границу при высокой точности изготовления, струйной смазке (если х > 100), температуре окружающей среды ниже J0° С и фосфатированных или сульфидироваиных колесах. Последнее не пригодно для выбора масел с присадками. Смазочный материал для тяжелонагруженных зубчатых передач можно выбирать с учетом большего числа параметров по рекомендациям, описанным в работе [6], с последующей проверкой на заедание, которую можно производить по критерию заедания, разработанному Ю. Н. Дроздовым и Ю. А. Гавриковым.  [c.743]

При выборе смазочного материала необходимо учитывать следующие факторы размеры подшипника и частоту его вращения, величину нагрузки, рабочую температуру узла и состояние окружающей среды. Для подпшпников, работающих с окружной скоростью до 4...5 м/с можно применять и жидкие, и пластичные смазочные материалы, при больших скоростях рекомендуется жидкая смазка. Чем выше нагрузка на подшипник, тем вязкость масла или консистентность пластичного смазочного материала должна быть больше, так как при этом прочность его граничного слоя увеличивается. Следует учитывать, что с повышением рабочей температуры вязкость и консистентность смазочного материала понижаются. При загрязненной окружающей среде рекомендуются пластичные смазочные материалы.  [c.237]

Переход трибосистемы из неравновесного термодинамически нелинейного состояния в стационарное равновесное связан с образованием диссипативной поверхностной структуры, происходящим в результате самоорганизации. Для реализации процесса самоорганизации необходимы соответствующие условия. Задача создания таких условий должна решаться при выборе и разработке материалов трибосистем для конкретных условий трения, выборе смазочных материалов, конструкции деталей узлов трения. Так, при разработке полимерных композиционных материалов для металлополимерных трибосистем предложен комплекс требований к составу, структуре и свойствам (табл. 1.1), обеспечивающий минимизацию накопления энтропии в трибосисте-ме [6].  [c.12]

Многообразие конструкций узов трения (трибосистем) и условий их работы в мап)инах и приборах не позволяет рекомендовать какой-то универсальный материал, обеспечивающий высокую надежность различных технических устройств. Основными факторами, которые должны учитываться в первую очередь при выборе материалов, являются нафузочные характеристики (контактное давление, скорость скольжения), заданный технический ресурс (общая продолжительность работы узла трения в часах), температурные условия эксплуатации, условия смазки (наличие и вид смазочного материала), характер окружаюЕцей среды (атмосферный воздух или инертный газ и их влажность, вакуум), требования к моменту (коэффициенту) трения.  [c.12]


Смазочные материалы. При проектировании механизмов и приборов весьма большое внимание уделяется выбору смазочных материалов. Пригодность масел для применения их в качестве смазочных материалов определяется по их вязкости и маслянистости. Под вязкостью или внутренним трением смазки понимают свойство одного слоя жидкости сопротивляться сдвигу по отнсшению к другому. Оценка вязкости производится в абсолютных и относительных (условных) единицах. Критерий абсолютной или динамической вязкости определяется по закону Ньютона и выражается зависимостью  [c.216]

В обоих случаях затрудняется образование окисных пленок и возникает контакт ювенильных поверхностей, что приводит к образованию адгезионных связей и интенсивному схватыванию. Интенсифицируются процессы упрочнения и разупрочнения материала, фазовые переходы, а для неметаллических материалов в вакууме может происходить испарение отдельных составляющих. Интервал условий (давления, температуры), в которых происходит резкое изменение свойств пары трения, для различных материалов изменяется в достаточно широком диапазоне. Работоспособность сопряжений в этих условиях может быть обеспечена при применении специальных Твердых смазочных покрытий Эффективность этих покрытий зависит от выбора состава суспензии, способа ее нанесения, от материала подложки и обработки ее поверхности. В качестве критерия для оценки работоспособности твердых смазок при их испытании принимают обычно время работы покрытия до резкого необратимрго повышения коэффициента трения. Толщина покрытия на стадии проектирований определяется из условия обеспечения необходимого зазОрй в со-  [c.253]

Не менее важным, чем подготовка поверхности, является выбор контактной жидкости — смазочного материала, который, будучи правильно подобранным, частично компенсирует потери чувствительности при прохождении ультразвука через грубообра-ботапную поверхность. По экспериментальным данным А. А. Кулика, при контроле нормальным преобразователем через поверхность с шероховатостью Rz -- 20. .. 50 мкм замена контактного смазочного материала с кинематическо , вязкостью 22 10 м /с (трансформаторного масла) на смазочный материал с вязкостью  [c.202]


Смотреть страницы где упоминается термин Смазочные Выбор : [c.164]    [c.396]    [c.743]    [c.44]    [c.202]    [c.2]   
Справочник машиностроителя Том 6 Издание 2 (0) -- [ c.4 ]

Сопротивление материалов (1958) -- [ c.895 ]

Справочник машиностроителя Том 4 (1956) -- [ c.695 ]



ПОИСК



Выбор и замена смазочных материалов

Выбор и нормирование расхода смазочных материалов

Выбор смазочно-охлаждаюших жидкостей при обра- j ботке отверстий

Выбор смазочно-охлаждающей жидкости и способы ее подвода

Выбор смазочно-охлаждающих жидкостей

Выбор смазочно-охлаждающих жидкостей для обработки резанием различных металлов в зависимости от вида обработки

Выбор смазочных материалов

Выбор смазочных материалов и режимов смазки для типовых узлов трепня

Выбор смазочных материалов и систем смазки

Выбор топлива, смазочного масла и во12-4. Сжатый воздух

Долбление Выбор смазочно-охлаждающих жидкостей

Жидкости — Веса удельные смазочно-охлаждающие Выбор 503, 941—943 Нормы расхода 504 — Состав

Зубофрезерование Выбор смазочно-охлаждающих жидкостей конических колес

Зубофрезерование Выбор смазочно-охлаждающих пальцевыми и дисковыми

Зубофрезерование — Выбор смазочно-охлаждающих жидкостей 503 — Чистота поверхности 461 —Элементы резания

Зубофрезерование — Выбор смазочно-охлаждающих жидкостей 503 — Чистота поверхности 461 —Элементы резания модульными Фрезами 834 835,- 859, 863 / 864 , 866 Режимы резания

Классификация способов смазки и выбор смазочных устройств

Масла смазочные 382, 709 — Выбор для подшипников качения 373 Вязкость 382, 383, 551—553 Свойства

Масла смазочные Выбор

Масла смазочные — Выбор для глобоидных

Масла смазочные — Выбор для глобоидных оередач

Металлы Обработка резанием — Выбор смазочно-охлаждающих жидкостей

Металлы Сверление — Выбор смазочно-охлаждающих жидкостей

Назначение и выбор смазочно-охлаждающих жидкостей

Назначение и выбор смазочных материалов

Обработка блоков цилиндров двигателей металлов резанием — Выбор смазочно-охлаждающих жидкостей

Определение продолжительности рабочего цикла и выбор смазочных питателей

Подход к разработке и выбору смазочных материалов для различных условий применения

Подшипники Смазка •— Выбор вязкости смазочных масел

Протягивание Выбор смазочно-охлаждающей жидкости

Протягивание — Выбор и расход смазочно-охлаждающих

Протягивание — Выбор и расход смазочно-охлаждающих жидкостей

Развертывание Выбор смазочно-охлаждающей жидкости

Развертывание — Выбор смазочно-охлаждающих жидкосте

Смазка — Выбор способа уровня масла 336—340 — Масла смазочные

Смазочно-охлаждающие Выбор для различных видов обработки

Смазочно-охлаждающие жидкости — Основные составы 246250 — Выбор 251 — Нормы

Смазочно-охлаждающие жидкости — Основные составы 246250 — Выбор 251 — Нормы расхода

Смазочные материалы Подача для подшипников качения жидкие— Номограмма для выбор

Смазочные материалы и выбор смазки

Твердые смазки и выбор смазочного материала

Точение металлов — Смазочно-охлаждающие жидкости — Выбор

Фрезерование Выбор смазочно-охлаждающей жидкости

Фрезерование металлов — Выбор смазочно-охлаждающих жидкостей

Фрезерование металлов — Выбор смазочно-охлаждающих жидкостей полуавтоматические пневматически

Хонингование 461, 613, 934 Выбор смазочно-охлаждающей

Хонингование 461, 613, 934 Выбор смазочно-охлаждающей жидкости 936, 938 — Режимы

Хонингование 461, 613, 934 Выбор смазочно-охлаждающей зубьев

Хонингование 461, 613, 934 Выбор смазочно-охлаждающей резания

Червячные передачи Выбор смазочного масл

Шлифование — Выбор и расход смазочно-охлаждающих жидкостей 503, 504 — Чистота



© 2025 Mash-xxl.info Реклама на сайте