Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Инструменты с упругими элементами

Инструмент и приспособления. В условиях единичного и мелкосерийного производства крупных жестких деталей широко применяют однороликовые приспособления с упругими элементами (рис. 3, табл. 2). Наличие упругого элемента обеспечивает постоянное усилие обкатывания в любой точке обрабатываемой поверхности.  [c.482]

Упрочняющее обкатывание и раскатывание. Этот способ может применяться для обработки наружных и внутренних поверхностей вращения, галтелей, плоскостей и различных фасонных поверхностей (рис. 12.9). В качестве инструмента применяют ролики или шарики, устанавливаемые в специальных приспособлениях с упругими элементами. Упругий элемент позволяет создать необходимое усилие при обработке детали. Точность обработки зависит не только от режимов обработки, но и от материала детали, ее конструкции, формы и качества поверхности, полученной на предыдущем переходе. Изменение размера поверхности для жестких деталей приведено в табл. 12.1. Шероховатость поверхности достигает значений Яа = 0,2... 0,8 мкм, при исходных значениях этого параметра-0,8... 6,3 мкм.  [c.142]


Цилиндр 1 с укрепленными на нем деталями имитирует приведенную массу руки ( 10 кг). Жесткость регулировочной пружины 13 составляет 3-10 Н/м. Упругий элемент 3, имитирующий жесткость руки, имеет нелинейную характеристику восстанавливающей силы. Электромагнитный демпфер с коэффициентом демпфирования порядка 80 Н-с/м имитирует вязкое трение руки человека. При испытаниях ручного инструмента имитатор прижимают к стенду, при этом цилиндр 1 перемещается на шариках И до совмещения указателя 12 с риской на цилиндре 1. Пружина 13 сжимается, а замкнутое кольцо 6 входит в магнитное поле демпфера. Ручной инструмент возбуждает колебания подвижных частей имитатора. Режим работы ручного инструмента с данным имитатором эквивалентен режиму работы инструмента в реальных производственных условиях.  [c.392]

Инструмент для выглаживания состоит из наконечника с алмазом (табл. 15) и державки. Державка при работе крепится на суппорте станка или в пиноли задней бабки. Нагружающие механизмы державок имеют упругие элементы (пружины), обеспечивающие непрерывный контакт алмаза с обрабатываемой поверхностью и примерно одинаковую силу выглаживания (рис. 31).  [c.506]

В некоторых случаях необходимы материалы с минимальной величиной затухания для упругих элементов различных точных приборов (манометров, альтиметров и др.), а также для изделий, которые должны издавать звук. Так, от материала камертонов, струн для музыкальных инструментов, металла для духовых инструментов, колоколов, гонгов требуется максимальная продолжительность звуковых колебаний и, следовательно, минимальная величина логарифмического декремента затухания. Для этих изделий применяют весьма твердые стали с высоким сопротивлением пластической деформации и медные сплавы с однородной структурой твердого раствора. Повышение сопротивления пластической деформации у таких сплавов достигается обычно однородной пластической деформацией с последующим невысоким отпуском.  [c.316]

Хромистые стали, содержащие 13 % Сг, обладают достаточно высокой стойкостью против общей коррозии в атмосферных условиях, слабых растворах кислот и солей при комнатной температуре и других слабоагрессивных средах. Стали этой группы мартенситного класса используют в основном как материалы с повышенной твердостью для изделий, работающих на износ, в качестве упругих элементов или режущего инструмента и их применяют после закалки и отпуска на заданную твердость.  [c.30]


Ультразвуковая сварочная головка (рис. 4.5) включает магнитострикционный преобразователь 1 из никеля или железокобальтового сплава пермендюра толщиной 0,15-0,2 мм, трансформатор упругих колебаний 2, обычно выполняемый из стали с достаточно высокими упругими характеристиками (например, сталь ЗОХГСА, 40Х и др.), ультразвуковой сварочный инструмент-волновод 6 ножевого типа. В плоскости с нулевым смещением трансформатора упругих колебаний 2 располагают диафрагму 3, с помощью которой вся акустическая система крепится к корпусу 4, выполняемому в виде охлаждающего бачка и жестко связанного с силовыми элементами сварочной установки. Диафрагма, как правило, выполняется заодно с трансформатором упругих колебаний, а ее расположение рассчитывают по специальным формулам для избежания акустических потерь. Магнитострикционный преобразователь соединяют с трансформатором упругих колебаний путем пайки твердыми припоями (ПСр-40, ПСр-45) либо склеивают эластичными термостойкими клеями. На стержнях преобразователя укладывают электрическую обмотку с рассчитанным числом витков.  [c.58]

Необходимый натяг выбирается за счет выбора соответствующей упругости элемента, на который опирается жесткая шпонка 2. Два возможных варианта упругих элементов (пружина или прокладка из полиуретана) показаны на рисунке (тип За). Этот тип направляющих элементов применяют в инструментах с определенностью базирования с целью снижения вибраций, или когда возможно изменение направления равнодействующей Яг поперечных сил при выходе многолезвийного ин-стр умента из отверстия.  [c.57]

Регулируемые направляющие — направляющие, положение которых в радиальном направлении относительно корпуса инструмента может изменяться перед рабочим ходом посредством специально предусмотренного регулирующего устройства. Регулируемые направляющие используют в инструментах, предназначенных, например, для выполнения растачивания отверстия за два прохода при одной установке заготовки, В этом случае перед каждым проходом с помощью регулирующего устройства устанавливается диаметр по направляющим в соответствии с диаметром отверстия, получаемого при данном проходе. Вращающиеся и регулируемые направляющие применяют в направляющих элементах с натягом, они выполняются либо упругими, либо жесткими, устанавливаемыми на упругом элементе.  [c.63]

На рис. 74 показана простейшая схема ультразвуковой сварки. Свариваемые заготовки 5 помещают на опоре 6. Наконечник 3 соединен с магнитострикционным преобразователем 1 через трансформатор упругих колебаний 2, представляющих вместе с рабочим инструментом 4 волновод (на рис. 74 показано, как изменяется амплитуда колебаний по длине волновода). Ультразвук излучается непрерывно в процессе сварки. Элементом колебательной системы, возбуждающей упругие колебания, является электромеханический преобразователь 1, использующий магнитострикционный эффект. Переменное напряжение создает в обмотке преобразователя намагничивающий ток, который возбуждает переменное магнитное поле в материале преобразователя. При изменении величины напряженности магнитного поля в материале возникает периодическое из-  [c.119]

На рис. 14, а изображена антропометрическая модель руки. Смысл элементов модели следующий плечо /, предплечье //, плечевой и локтевой суставы рассматриваются как шарниры, тело человека — неподвижная опора, мускулы плеча — пружина с коэффициентом упругости / l, мускулы-сгибатели локтя — пружина с коэффициентом упругости /Са, мускулы ладони — пружина с коэффициентом упругости /Со- Система координат XOY (см. рис. 14, а) жестко связана со средним положением плеча /. Плечо может только колебаться относительно рассматриваемой системы координат. Любое смещение положения равновесия плеча приводит к соответствующему повороту системы координат. Поза руки оператора определяется углом сгиба руки а между плечом / и предплечьем //и углом р между направлением воздействия инструмента и осью X, связанной со средним положением плеча /. Такое определение угла р соответствует возбуждению источником, ось возбуждения которого задана в пространстве (источник достаточно жесткий и мощный), а мускулы, фиксирующие кисть относительно предплечья, достаточно мягкие (что соответствует реальному случаю,) и поэтому кисть ведет себя как пружина на шарнире.  [c.67]


Основной силой, на которую приходится вести расчёт, является сила резания. Она изменяется вследствие изменения припуска и твёрдости материала. По мере передвижения инструмента относительно детали изменяются направление и точка положения силы резания. При наличии упругости в системе установочных элементов и зажимов всякое изменение в величине или расположении внешних сил вызывает смещение детали относительно инструмента, а следовательно, изменение её формы и размеров. Средством для уменьшения влияния этих переменных сил является предварительный натяг между деталью, с одной стороны, и установочными элементами — с другой.  [c.17]

Метод последовательного поперечного гофрирования гибких элементов эластичным пуансоном по жесткой матрице имеет следующие достоинства низкая технологическая себестоимость в условиях крупносерийного и массового производства высокое качество поперечно-гофрированных оболочек за счет равномерной толщины стенки, а также за счет высоких прочностных и упругих характеристик изделий отсутствие поверхностных повреждений простота применяемого оборудования и инструмента удобная возможность механизации и автоматизации процесса гофрирования возможность изготовления оболочек с любым сечением гофров и значительной длиной изделий. Л етод характеризуется достаточно высоким коэффициентом ис-  [c.22]

Абразивный инструмент представляет собой матрицу, содержащую твёрдые режущие включения. Поскольку матрица изнашивается значительно быстрее включений, именно включения являются выступающими элементами, находящимися в контакте с обрабатываемой поверхностью. Это даёт основание моделировать поверхность инструмента системой штампов (включений), связанных между собой (заключенных в матрицу). Обрабатываемую поверхность будем моделировать упругим полупространством, поверхность которого остаётся плоской в про-  [c.445]

Ультразвуковой преобразователь с механической колебательной системой служит для преобразования электрической энергии источника тока ультразвуковой частоты (ультразвукового генератора) в механическую энергию ультразвукового инструмента, который предназначен для передачи упругих колебаний в зону сварки и создания рабочего сварочного усилия. Ультразвуковой преобразователь является активным элементом колебательной системы — двигателем. Пассивная часть — механическая колебательная система и инструмент (волноводы) — трансформирует и усиливает упругие колебания, согласовывая выходное сопротивление преобразователя с сопротивлением нагрузки в виде свариваемых деталей. К механической колебательной системе предъявляют следующие требования стабильность рабочей (резонансной) частоты колебаний возможность быстрой замены сварочного инструмента высокие акустико-меха-нические свойства системы — минимальные потери высокое качество крепления всех элементов системы надежное крепление системы к корпусу или к механизму давления сварочной головки отсутствие потерь в креплениях.  [c.238]

Крепление завальцовкой. Профиль и размеры элементов оправы выполняются согласно табл. 1. Толщина загибаемого края в зависимости от диаметра оптической детали и материала оправы выбирается в пределах 0,2—0,4 мм, и при завальцовке край оправы протачивается на конус до толщины стенки по краю от 0,05 до 0,1 мм (рис. 1). Завальцовка производится на токарном станке с помощью специальных инструментов. Край металлической оправы загибается так, чтобы он плотно охватывал линзу по всей окружности (рис. 2). Вследствие упругости тонкого края оправы давление на стекло сравнительно невелико, поэтому при правильной завальцовке оптические детали даже небольшой толщины не деформируются и не получают внутренних напряжений. При завальцовке загибаемый край оправы должен ложиться только на фаску, а не на полированную поверхность линзы. Для придания соединению водонепроницаемости ободок линзы перед установкой в оправу покрывают специальной замазкой.  [c.310]

Графит обладает уникальными механическими свойствами, особенно при высоких температурах. С одной стороны, он характеризуется сравнительно низкой твердостью и высокой хрупкостью, хорошо обрабатывается режущим инструментом и хорошо притирается. (Чешуйки графита толщиной менее 10 мкм можно ковать, гнуть. Тонкие графитовые нити гибки, подобны мягкой медной проволоке [1].) С другой стороны, — его прочность, особенно удельная (отношение предела прочности к объемной массе), позволяет использовать его в элементах конструкций, подверженных значительным нагрузкам. При высоких температурах, когда прочность металлов и их сплавов, окислов, силицидов, боридов и подобных материалов резко снижается, преимущества в прочностных свойствах графита выявляются особенно рельефно. Его прочностные характеристики с возрастанием температуры до 2000—2500° С повышаются. Поэтому изучение высокотемпературных свойств графита представляет значительный интерес. Б этой связи будут рассмотрены пределы прочности при сжатии, растяжении и изгибе, ползучесть, упругие свойства, твердость,  [c.43]

Точность предварительной настройки инструмента вне станка зависит от целого ряда факторов — пО грешностей изготовления настроечных приспособле ний, выполнения инструментальных отверстий, приме няемых для настройки измерительных инструментов точности установки в тангенциальном направлении упругих деформаций системы СПИД и др. Установлено [15], что для достижения точности выше 4-го класса требуются дорогие оптические устройства и высокая точность изготовления присоединительных элементов, в то же время 84% инструментов, применяемых для обработки деталей, предназначены для обработки с точностью 0,12 мм и грубее.  [c.176]


Быстрое остывание заготовки при контактировании с холодным штампом — одна из причин значительного увеличения усилия деформирования, особенно при изготовлении тонкостенных поковок, характеризующихся большим отношением площади поверхности к объему, и снижения пластичности металла. Увеличение усилия влечет за собой установку мощного оборудования, снижение точности поковок из-за упругих деформаций инструмента и стойкости штампов. Охлаждение тонких элементов поковки ухудшает заполняемость гравюры инструмента, и в отдельных случаях это приводит к назначению увеличенных напусков. Например, при оформлении наметки под прошивку отверстий поковок из титановых сплавов объем остающегося полотна составляет 10— 20% объема прошиваемого отверстия. При этом отношение высоты ребер к их толщине должно быть не более 10 [8]. Температура поверхности стальной заготовки, соприкасающейся с холодным штампом, составляет 500—750° С. Получение тонких элементов в этих условиях крайне затруднительно.  [c.7]

Многоэлементные инструменты с упругими элементами (пружинящие) обеспечивают постоянное усилие контакта деформирующих элементов и обрабатываемой поверхности. Такие инструменты почти не уменьшают погрешности предшествующей обработки и являются копирующими. На рис. II показаны пружинящие двухшариковые раскатки. В регулируемой раскатке для обработки отверстий с диаметрами 130 - 400 мм (рис. 11, а) шарики во избежание заклинивания опираются на шарикоподшипники. В раскатке меньшего диаметра (рис. 11, 5) опорой для шариков служат вставки из фторопласта.  [c.489]

Многоэлементные инструменты с упругими элементами (яружинящие) обеспечивают постоянное усилие контакта деформирующих элементов и обрабатываемой поверхности. Такие инструменты почти не уменьшают погрешности предшествующей обработки и являются копирующими. Пружинящие двухшариковые раскатки показаны на рис. 461, В регулируемой раскать е для обработки отвер-  [c.546]

Для объективной оценки вибрационно-силовых параметров ручного инструмента при их испытаниях применяют имитаторы входного механического импеданса руки человека. На рис. 10 представлена схема имитатора конструкции В. В. Маточкина. Инерционная масса выполнена в виде цилиндранесущего с одной стороны посадочное кольцо 2 для крепления инструмента, упругий элемента, гайку 4м шайбу 5, а с другой стороны — замкнутое кольцо 6 и электромагнитный демпфер, состоящий из сердечника 7, магни-топровода 8 и катушки 9. К сердечнику демпфера жестко прикреплен стакан 10.  [c.392]

Регистрация перемещения рукоятки молотка производилась индукционным виброщупом конструкции завода Пневматика . Регистрация ускорения движения рукоятки молотка осуществлялась пьезокварцевым датчиком типа ИДКД конструкции Лаборатории акустических исследований Института машиноведения. Регистрация силы, действующей в точке соприкосновения руки оператора с рукояткой молотка, производилась динамометром тензометрическогр типа, в качестве упругого элемента которого была использована рукоятка молотка. Блок-схема измерений указанных параметров вибрахщй представлена на рис. 8. Испытания проводились без внедрения инструмента в обрабатываемую породу.  [c.26]

Калибровка полузакрытой осадкой обеспечивает взаимную перпендикулярность торцов и боковой поверхности, заданные с большой точностью размеры диаметра. Однако в начальной стадии, т. е. при открытой осадке, ось симметрии заготовки, вследствие искажений ее формы при отрезке, ие совпадает с осью симметрии полости матрицы. Одновременного соприкосновения заготовки со стенками матрицы не происходит, симметрия течения металла отсутствует, волокно искривляется, могут появиться заусенцы, что снижает качество штампуемых заготовок и стойкость инструмента при выдавливании полости. Эти явления усиливаются по мере увеличения зазора между матрицей и заготовкой как при вертикальном, так и при горизонтальном исполнении пресса. Для исключения этих явлений применяют матрицы, которые могут смещаться при несимметричном боковом давлении и удерживаться в центральном положении упругими элементами. Большой практический интерес имеют конструкции, разработанные НИИТа-втопромом.  [c.178]

Основными особенностями при обратном выдавливании таких деталей следует считать большую неравномерность течения металла в стенку коробок и низкую стойкость рабочего инструмента. На рис. 57, а представлена конструкция штампа для выдавливания, а йа рис. 57, бив показаны конструкция соответственно пуансона и составной матрицы, позволяющие исключить проворот заготовки в матрице при штамповке и повысить ее стойкость (при этом заготовка остается на пуансоне). На рис. 58 представлена конструкция штампа [А. с. 742026 (СССР)], позволяющая получать коробчатые детали с ровным верхним торцом и исключить операцию обрезки стенок по высоте. В верх, ней плите 1 штампа расположен узел крепления пуансона 2 с закрепленным в нем пуансоном 3. К плите I крепятся также упоры 8 и прижимное устройство, состоящее из направляющих 10, прижима 11 и упругих элементов 13. На нижней плите 5 смонтированы неподвижный элемент матрицы 14, выталкиватель 16, механизмы подъема 9 стенок матрицы 4 и механизм возврата 15. Упоры 12 служат для регулирования времени действия прижима И. Буфер 17 служит для смягчения удара во время возвращения стенок матрицы 4 в исходное положение. Направление верхней плиты осуществляется по колонкам 6 и втулкам 7. Штамп работает следующим образом. Плита 1 движется вниз до соприкосновения пуансона 3 и рабочей части прижима И с заготовкой, установленной на матрицу 14. При достижении силы, необходимой для деформирования, металл заготовки начинает вытекать в зазор между пуансоном 3 и стенками матрицы 4. При этом под действием прижима 11, действующего на верхний торец за-  [c.189]

Для получения большой зоны контакта инструмента с обрабатываемой деталью применяют высокоэластичные круги с основаниями из резины в виде полых колен, пористой резины (рис. 7.5,в), воздушных баллонов (рис. 7.5,а,б). Их успешно применяют для обработки керамики, стеклотекстолитов и иных видов пластмасс. При сухом шлифовании они выполняют роль отражателя высокочастотного электромагнитного излучения, используемого для измерения толщины стенок изделия. Сменные абразивные элементы таких круговсклеенные бесконечные ленты. Предварительное натяжение лент обеспечивается упругими силами воздушных баллонов или резины. Натяжение ленты  [c.162]

Наряду с простотой обработки методы обкатывания и раскатывания обеснечивают значительную однородность форм микро-неровностей. Для этого используют разнообразные конструкции инструментов, различающиеся числом и формой деформирующих частей (роликов, шариков). Наилучшие результаты обеспечивают инструменты, на которые усилие передается через упругие элементы. Этим достигается постоянное усилие обработки в любой точке обрабатываемой поверхности. Усилие регулируется.  [c.584]

В настоящее время с помощью измерительных инструментов и приспособлений при сборке осуществляются главным образом геометрические проверки, как-то наличия требуемых зазоров в сочленениях, параллельности и перпендикулярности осей, соосности и размеров отдельных элементов узлов, получающихся при сборке. Распространенным видом контроля также является проверка плотности сопряжений. Схемы распространенных геометрических проверок, осуществляемых при сборке машин и механизмов, представлены на фиг. 224. В отдельных случаях, если этого требуют конструктивные и эксплуатационные соображения, при сборке контролируются усилие запрессовки, амортизирующая способность упругих элементов узлов (муфт, передач), статическая и динамическая отбалансированность узлов, своевременность прохождения рабочих процессов в изделии (например, искрообразования, впрыска топлива, подачи горючей смеси и т. д.). Во всех этих случаях также требуются специальные приспособления, конструкции которых разрабатываются применительно к каждому отдельному случаю.  [c.194]


Для прецизионных станков очень важным условием является стабильность зажима и отсутствие увода подвижного узла, чтО неизбежно связано с потерей точности позиционирования. Часто с этой целью зажим осуществляют через промежуточные упругие элементы (планки, ленты). На рис. 241, а приведена конструкция, а на рис. 241, б расчетная схема устройства для автоматического зажима инструмента в коническом отверстии щпинделя много-операционного станка, разработанное в Ленинградском особом конструкторском бюро станкостроения (ОКБС).  [c.279]

Учитывая эти обстоятельства, целесообразно при ремонте рельсов сохранять сформировавшийся их поперечный профиль, убирая при этом вредный дефектный поверхностный слой. Обеспечить это могуг так называемые упругие технологии (иглофрезеро-вание, лепестковое шлифование). Вследствие упругих деформаций рабочих элементов инструмента (проволочек и лепестков) при опре-де.тенном сохранении жёсткости они позволяют снимать поверхностный дефектный слой и сохранять сформировавшийся поперечный профиль. Это приводит к необходимости целенаправленной разработки инструмента с определенной упругостью его рабочих элементов, Одновременно на поворотных участках в результате большого силового и температурного воздействия на боковые поверхности головки рельса от реборды колеса происходит их быстрый износ (практически срезание), что приводит к необходимости быстрой их замены. Для избежания этого вредного явления эти воздействия сил и температур на боковые поверхности рельс на этих участках дорог целесообразно из эксплуатации перенести в технологический процесс с увеличением температурного и уменьшением силового воздействия. Это позволяют обеспечить термомеханическая или электромеханическая обработка.  [c.442]

С помощью диффузионной сварки изготовлены аппараты, плакированные серебром или медью, высотой 3 м и диаметром 1,86 м высокостойкие штампы для вырубки магнитопроводов электродвигателей для электротехнической промышленности режущий и измерительный инструмент металлокерамические гермовводы узлы из феррита и металлокерамики упругие элементы датчиков многослойные панели модули пневмоники колеса турбин радиального типа лопатки турбин пористые трубы для химической и газовой промышленности клапаны, поршни и гильзы цилиндров двигателей и многие другие. В электронной промышленности диффузионная сварка применяется для изготовления и сборки замедляющих систем, катодных ножек, полупроводниковых приборов и других деталей и узлов электровакуумных приборов позволяет успешно сваривать фольгу из никеля толщиной 3 мкм с массивной деталью, алюминиевую фольгу толщиной 8 мкм с решеткой из меди. Технология сварки обеспечила получение вакуумноплотных, термостойких, вибростойких соединений при сохранении высокой точности, геометрических размеров и форм изделий.  [c.11]

Приборы для измерения сил резания. Принципиальные кинематические схемы устройства динамометров основаны па одновременном измерении одной или нескольких слагающих силы резания, действующих на режущие элементы инструмента. Работа всех известных динамометров для измерения силы резания основана на упругой деформации их основных рабочих элементов круглых стержней, витых или плоских пружин в механических приборах манометрических трубок в гидравлических приборах металлических мембран, металлических или прессованных уголь ных стержней в различного рола электрических приборах. От пружинящих свойств этих основных рабочих элементов в значительной мере зависит точность показании динамометров. Основным недостатком пружинных и гидравлических динамометров являются относительно бо.пьшие линейное и круговое перемещения инструментов, которые вызываются деформацией пружинящих элементов в этих приборах. Для измерения сил при резании с тонкой стружкой более подходят электрические динамометры. Из электрических динамометров наиболее просты индуктивные датчики и проволочные датчики, наклеиваемые на поверхность пружи нящих элементов прибора. Для нормальной работы электричлских динамометров достаточны упругие деформации рабочих элементов в пределах нескольких микронов.  [c.287]

Специфика рассматриваемой операции шлифования заключается в том, что прибор активного контроля управляет рабочим циклом по размеру детали, давая команду на переключение режима чернового и чистового шлифования. Исключение составляет этап выхаживания, которое прекращается по времени. Управление по размеру исключает влияние на точность обработки тепловых явлений в станке и инсурументе и размерного износа инструмента. Управление по времени на этапе выхаживания приводит к рассеиванию размеров из-за погрешностей упругой деформации системы СПИД и температурных деформаций детали. Однако измерение прибором активного контроля глубины желоба, равной полуразности двух диаметральных размеров (цилиндрической поверхности буртика и диаметра желоба), почти исключает влияние на точность обработки тепловых погрешностей детали. Погрешность установки и геометрические неточности элементов станка на размер детали здесь влияния не оказывают, сказываясь лишь на ее форме. В связи с этим в формуле (14.Ь) для расчета технологического размера имеет место только одна составляющая погрешности — величина упругой деформации технологической системы СПИД -перед выхаживанием Кг. Таким образом, глубина желоба после шлифования определяется суммой настроечного размера Н , по которому станок переключается на этап выхаживания, и погрешности упругой деформации Y2, определяемой уравнениями (14.51)—(14.18).  [c.494]

Точность расположения осей отверстий у обрабатываемой детали обеспечивают соответствующим расположением осей шпинделей станка от технологических баз. Наиболее податливым звеном технологической системы при обработке отверетия является инструментальная наладка, состоящая из режущего и вспомогательного инструментов. Расточные борштанги с резцами и осевые инструменты, используемые без направления или с направлением во втулках приспособления, при расчете отжатий рассматривают как балки, работающие при определенных схемах закрепления и нагружения. Влияние других элементов технологической системы на упругие перемещения оси отверстия учитывают экспериментальными коэффициентами. Кроме этого на  [c.476]

Захватные устройства служат для захвата и удержания деталей или инструментов, а также их позиционирования в процессе выполнения технологических операций. По принципу действия они могут быть механическими, вакуумными, магнитными, эластично охватывающими и др. Неуправляемые механические захватные устройства выполняют в виде пинцетов, цанговых пальцев и втулок, клещей с прижимной пружиной (рис. 170), усилие зажатия которых осуществляется за счет упругих свойств зажимающих элементов. Такие захваты применяют при манипулировании объектами небольшой массы. Для в гсвобожде-ния объекта используют специальные съемники. Более широко используют командные механические захватные устройства клещевого типа. Движение зажимающих губок обеспечивают с помощью передаточного механизма (рычажного, реечного, клинового) от пневмопривода. Для этого используют поршневые или диафрагменные двигатели (рис. 170, д). Более универсальны магнитные и вакуумные захватные устройства.  [c.329]

При механической обработке на токарных станках деталь сохраняет устойчивое положение относительно инструмента благодаря сценляемости, возникающей в местах контакта деталей с опорными и зажимными элементами приспособления. Степень сценляемости, характеризующаяся определенными коэффициентами, зависит от состояния контактирующихся поверхностей, от упругости зажим ного механизма и от величины зажимной силы. Так, например, при гладких поверхностях контакта этот коэффициент принимают равным (X = 0,25 при наличии параллельных канавок, уменьшающих площади контакта вдвое, (.i = 0,3-ь0,4 при крестообразных канавках, сокращающих эту площадь до одной четверти, ц = 0,45- - 0,5 и, наконец, при острой односторонне направленной насечке tx =0,8- .  [c.126]

От пружинящих свойств этих основных рабочих элементов в значительной мере зависит точность показаний всех динамометров. Чем чувствительнее приборы, применяемые для измерения тем или иным способом величин упругих деформаций, тем больше ошибки, связанные с малейшими отклонениями величины деформаций пружинящих элеиентов прибора от закона Гука, и тем труднее установить стабильное положение нулевой линии на шкале показаний. Основным недостатком пружинных и гидравлических динамометров является относительно большое линейное и круговое перемещение инструментов, вызванное деформацией пружинящих элементов в этих приборах. Перемещения инструмента исключают возможность пользования механическими или гидравлическими динамометрами обычных конструкций для измерения сил при резании с тонкими стружками. Для этой цели более подходят пьезокварцевые электромагнитные (пермалоевые) и конденсаторные электрические динамометры или проволочные датчики,наклеиваемые наповерх-ность пружинящих элементов прибора. Для нормальной работы электрических динамометров достаточны упругие деформации рабочих элементов в пределах нескольких микрон.  [c.26]


Конструктивные варианты узлов направления инструментов выбираются с учетом условий выполнения наладки и техобслуживания станка при ограниченном операционном пространстве. Применяются стационгфные кондукторные плиты (КП), устанавливаемые на столе и подвижные КП, подводимые при рабочем ходе агрегатной головки и фиксируемые на столе или на приспособлении. При применении стационарных КП точность расположения осей отверстий зависит, главным образом, от геометрического смещения инструмента, а для подвижных - от упругих отжатий КП и элементов их фиксации в момент обработки. Особенности исполшования стациои ных и подвижных КП на АС рассмотрены выше применительно к спутникам АЛ.  [c.740]

Изменение силы резания под влиянием переменных условий обработки и податливости системы С—3—И при изменении положения инструмента относительно етой системы приводит к неравномерности отжатий элементов упругой системы С- 3—И, в результате чего возникают погрешности размера и формы обработанных поверхностей.  [c.16]

Скорость деформирования при осадке. Обычно под скоростью деформирования понимают скорость движения ползуна пресса. Однако фактическая скорость уменьшения высоты заготовки при осадке заготовок с большим отношением диаметра к высоте может отличаться от скорости движения ползуна вследствие упругой деформации инструмента и элементов оборудования, что необходимо учитьшать в расчетах.  [c.118]

Для реализации системы управления использовались средства электроавтоматики, позволяющие получить требуемую точность работы при относительно небольших затратах на изготовление системы. Для измерения упругих перемещений системы СПИД в процессе обработки, а также малых перемещений рабочих органов в процессе настройки и перенастройки применяются дифференциальные индуктивные датчики БВ-844, которые с достаточной точностью обеспечивают стабильное измерение малых перемещений. Для автоматической связи баз станка, несущих обрабатываемую деталь, режущего инструмента и программоносителя ис- пользовано программное устройство, имеющееся на станке. В цепь программного устройства, управляющую перемещением консоли вверх при подводе упора к фрезе, введено параллельное управление от датчика Д2-1, фиксирующего момент касания упора с фрезой. Удор подвешен на плоских пружинах для исключения трения скольжения и повышения точности измерения при фиксировании момента соприкосновения-упора с фрезой. Для осуществления в процессе обработки регулирования рабочей подачи используется электропривод постоянного тока с управлением от электромашин-ного усилителя ЭМУ 12А. В качестве исполнительного двигателя используется двигатель постоянного тока ПН-5 с параллельным возбуждением. Часть элементов ЭС1, ЭС2, Д2-1 и др.) схемы управления используются на различных этапах цикла перенастройки с целью сокращения их общего количества и тем самым упрощения схемы.  [c.371]


Смотреть страницы где упоминается термин Инструменты с упругими элементами : [c.8]    [c.212]    [c.81]    [c.61]    [c.297]    [c.170]    [c.39]   
Справочник технолога-машиностроителя Том 2 Издание 4 (1986) -- [ c.391 ]



ПОИСК





© 2025 Mash-xxl.info Реклама на сайте