Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Элементы оборудования

Функциональная часть-элемент, оборудование или функциональная группа.  [c.267]

Диагностика технического состояния и оценка ресурса аппаратов являются специальной дисциплиной, на базе которой формируются знания по обеспечению надежности и безопасности эксплуатации длительно проработавших сварных конструкций оболочкового типа. К числу отличительных черт нефтеперерабатывающих и нефтегазохимических производств следует отнести наличие значительной доли потенциально опасных объектов, выработавших проектный срок эксплуатации или не имеющих расчетного срока эксплуатации. Износ основного технологического нефтегазохимического оборудования достиг 80-90%, и оно естественно нуждается в замене. Поддерживать работоспособное состояние оборудования не представляется возможным без решения проблем диагностики современными достоверными методами и оценки остаточного ресурса. Параметры эксплуатации такого оборудования (рабочая температура и давление, рабочая среда и т.д.) охватывают очень широкие интервалы и весьма различны по воздействию на материал. Им присуще разнообразие по конструктивным оформлениям и по применяемым методам формоизменяющих операций при изготовлении. В процессе эксплуатации в металле конструктивных элементов оборудования происходит постепенное накопление необратимых повреждений и по истечении определенного времени возможны преждевременные их разрушения.  [c.3]


С позиции надежности конструктивных элементов оборудования, работающего под внутренним давлением, одним из важнейших свойств является обеспечение и поддержание его работоспособного состояния.  [c.69]

В программах функциональной (оперативной) диагностики должны быть также предусмотрены задания режимов функционирования обследуемого элемента оборудования и дополнительная установка специальной измерительной и диагностической аппаратуры. Результаты оперативной диагностики оформляются в виде протоколов или соответствующих актов, заключения или отчета. Для бездействую-  [c.165]

Работоспособность конструктивных элементов оборудования представляет собой очень широкое и комплексное понятие, охватывающее возможность выполнять свои рабочие функции без разрушений и аварий в течение длительного, но определенного и ограниченного времени. При этом должна быть обеспечена безопасность и надежность эксплуатации, соответствующая объектам такого ответственного назначения, как сосуды и аппараты, работающие под внутренним давлением. При оценке работоспособности конструктивных элементов аппаратов необходимо опираться на данные о реальной их дефектности и данные о реальных механических характеристиках металла с учетом эффектов старения. Диагностическое оборудование должно давать возможность производить измерения всех основных параметров повреждаемости, определяющих работоспособность элементов. Необходимо иметь методы, позволяющие оценивать работоспособность по данным о дефектах, свойствах металла в процессе эксплуатации, параметрах нагруженности с учетом перепадов давления, состояния коррозионной защиты и др.  [c.277]

Решение этой проблемы - задача не простая. Прежде всего, наибольшую сложность в эту проблему вносят концентраторы напряжений, в том числе различные дефекты сварных соединений и основного металла, которые приводят к крайне неравномерному распределению напряжений и деформаций, возникновению локализованных пластических деформаций, изменению свойств металла из-за деформационного охрупчивания и старения и др. Кроме того, в расчетах ресурса безопасной эксплуатации необходимо учитывать повреждаемость металла во времени, что дополнительно усложняет решение подобных задач. Особую сложность представляет оценка ресурса элементов оборудования при одновременном действии нескольких повреждающих во времени факторов с учетом различного рода дефектов, в том числе и трещиноподобных. Заметим также, что практически открытой остается проблема старения металла в процессе эксплуатации оборудования.  [c.329]


Рассмотрим основные положения, которые необходимо учитывать при разработке методики оценки ресурса элементов оборудования на основе диагностической информации.  [c.360]

На рис. 6.2 показаны различные схемы определения остаточного ресурса tp ( срока службы) элементов оборудования для различных вариантов изменения параметров натру- юк Q и предельного состояния R.  [c.364]

Рис. 6.2. Детерминированная оценка работоспособности (ресурса) конструктивных элементов оборудования Рис. 6.2. Детерминированная оценка работоспособности (ресурса) <a href="/info/4810">конструктивных элементов</a> оборудования
Таким образом, методы прогнозирования ресурса должны базироваться на таких критериях, которые бы учитывали временные процессы накопления повреждений в металле. В качестве параметров надежности должны быть показатели долговечности, например, время до разрушения или число циклов нагружения до разрушения. Существующие нормативные материалы по расчету прочности не позволяют получать такие важные характеристики прочностной надежности. Например, в процессе эксплуатации аппаратов вследствие деформационного старения происходит некоторое повышение прочностных свойств, т.е. временного сопротивления и предела текучести металла. Для конструктивных элементов оборудования из низкоуглеродистых и низколегированных сталей, работающих при нормальных условиях эксплуатации, значение предела текучести может возрастать до 20%. Заметим, что временное сопротивление Gb является расчетной характеристикой при выполнении прочностных расчетов по действующим НТД. Из этого следует парадоксальный вывод о том, что с увеличением срока службы аппарата можно увеличивать рабочее давление, если производить оценку прочности по действующим отраслевым нормам и правилам. Другими словами, с увеличением срока службы аппарата его надежность должна увеличиваться. В действительности, наряду с увеличением прочностных свойств происходит повышение отношения предела текучести к пределу прочности К в, снижение пластичности и вязкости, которые определяют ресурс длительной прочно-  [c.366]

Ниже дана методика оценки остаточного ресурса элементов оборудования при малоцикловом нагружении.  [c.388]

ДИАГНОСТИРОВАНИЕ включает в себя три этапа измерение, анализ и принятие решения. При этом необходимо выбрать адекватные модели исправного состояния элементов оборудования, аварийных состояний конструируемых параметров, распознавания аварийных ситуаций, прогнозирования текущих и аварийных состояний, а также структуру исследуемой системы технически реализовать системы автоматического контроля, защиты и регулирования элементов системы.  [c.16]

Проводят исследование фактической нагруженности основных несущих элементов оборудования и влияния на его износ эксплуатационных факторов остаточной деформации в местах повреждения элементов оборудования выпучин вмятин характера и степени коррозионного, эрозионного и иного повреждения металла изменения толщины стенок.  [c.165]

Для оценки работоспособности фонтанной арматуры какого-либо месторождения, произведенной одной и той же фирмой и имеющей одинаковый типоразмер, в работах ВНИИГАЗа рекомендуется [138] производить разрезку корпусных деталей и запорных элементов фонтанной арматуры одной из скважин. При этом определяют химический состав и механические свойства материалов, включая ударную вязкость. Принимая во внимание фактические рабочие давления газа и определенные методами толщинометрии значения толщины стенок элементов оборудования, рассчитывают рабочие напряжения в металле корпусных элементов и определяют остаточный ресурс элементов фонтанной арматуры.  [c.178]

Ингибиторная защита предусматривает обеспечение надежной работы всех элементов оборудования скважин, шлейфовых газопроводов, сепараторов, теплообменников и газопроводов большого диаметра. Применение ингибиторов должно приводить к снижению скорости общей коррозии металла до величин, не представляющих какой-либо опасности для технологического оборудования, а в случае сероводородной коррозии — к резкому уменьшению наводороживания металла и к потере им пластических свойств, то есть, в конечном итоге, к снижению опасности сероводородного растрескивания.  [c.221]


При работе ядерного реактора радиационная обстановка в помещениях, расположенных в непосредственной близости от него, определяется проникающим излучением активной зоны, конструкций реактора и защиты, а также активностью теплоносителя. При остановке реактора радиационная обстановка в реакторном зале обусловлена остаточным у-излучением продуктов деления ядерного горючего, излучением активированных конструкций реактора и защиты. Во всех других помещениях, где расположены коммуникации или элементы оборудования технологического контура, омываемые теплоносителем, радиационная обстановка после остановки реактора определяется отложениями радиоактивных продуктов коррозии и примесей в теплоносителе, а иногда и продуктами деления ядерного горючего.  [c.7]

Часто необходимо внутри пространства, окруженного вторичной защитой, устанавливать дополнительную теневую защиту от наиболее интенсивно излучающих элементов оборудования. При правильном проектировании такая теневая защита может обеспечить непродолжительный доступ в часть помещения, окруженную вторичной защитой.  [c.76]

Весьма важная и сложная задача в проблеме проектирования защиты — расчет прохождения излучения по каналам и пустотам, которые необходимо предусматривать для различных элементов оборудования, коммуникаций и т. Д. Кроме того, при сооружении защиты всегда возникают различные зазоры и щели. Излучение, прошедшее по щелям, каналам и пустотам в защите, может стать фактором, который необходимо учитывать при расчете и последующем выборе толщины защиты.  [c.80]

Основными элементами оборудования при использовании радиационных методов являются источник и детектор излучения. В зависимости от избранного метода диагностики и измеряемого параметра, размеров контролируемого объекта, тормозной способности среды и безопасности обслуживания применяют различные виды излучения (а-, р-, у- и нейтронное излучение).  [c.245]

Кроме того, сопротивление движению стержня возникает также вследствие трения проволоки об уплотнительные элементы оборудования герметизации устья и трения жидкости о поверхность ясса, также зависящего от скорости, формы и размеров его [3].  [c.124]

Вентиляционная установка. В печах небольшой емкости, не имеющих водяного охлаждения, вентиляционная установка служит для отвода тепла от индуктора и поверхности проема подового камня, нагреваемой за счет теплопроводности от расплавленного металла в близко расположенных каналах. Применение водоохлаждаемого индуктора не освобождает от необходимости вентилировать проем подового камня во избежание перегрева его поверхности. Современные съемные индукционные единицы имеют не только водоохлаждаемые индукторы, но также водяное охлаждение кожухов и проемов. В проеме размещается разрезная рубашка водяного охлаждения, прилегающая к поверхности проема, но не образующая замкнутого витка. Однако и такие индукционные единицы имеют дополнительное воздушное охлаждение (271. Таким образом, вентиляционная установка является обязательным элементом оборудования канальной печи.  [c.273]

Печная установка включает в себя собственно канальную печь с механизмом наклона и ряд элементов оборудования,,необходимых для обеспечения ее нормальной эксплуатации.  [c.286]

По мере разработки и эксплуатации месторождения условия работы одних и тех же элементов оборудования могут изменяться. В связи с этим развитие процесса коррозии непостоянно, что также предопределяет выбор и применение ингибиторов коррозии.  [c.186]

Система базирования элементов оборудования. Системы базирования отвечают за взаимное расположение всех элементов оборудования токарного станка, инструмента, инструментальной оснастки, технологической оснастки (приспособления) и детали в процессе обработки. Система базирования элемента создается описанным во фрезерной обработке методом, определяющим положение начала координат элемента и направления его осей X, У, 2.  [c.109]

Коррозия оборудования паровых теплосетей приобретает наиболее опасный характер при наличии в кон денсате кислорода, который всегда проникает из атмосферы при открытой системе сбора конденсата. Элементы оборудования герметизированной паровой теплосети подвергаются менее интенсивной коррозии.  [c.15]

Н. Формованные элементы оборудования ванных комнат, , , 291  [c.260]

Частичный перебор чаще всего удается осуществить на основе частичных модификаций некоторых исходных структур. Последние получаются либо из ограниченного множества готовых структур, либо с помощью экономичных пос.ледовательных алгоритмов. Далее вносятся некоторые модификации. Например, при размещении микросхем па печатной плате или оборудования в отсеке корабля такие модификации могут представлять собой парные перестановки — взаимные перемены мест двух элементов оборудования.  [c.77]

МОЖНО использовать для определения прочностных xapai re-ристик и выявления элементов оборудования с явно выраженными отклонениями прочностных характеристик от стандартных требований. В данной работе систематизированы значения механических свойств для основных групп нефтеаппаратурных сталей. Для количественной оценки механических свойств без вырезки образцов использованы характеристики твердости по Бринеллю.  [c.317]

В настоящем разделе рассма фивается методика оценки работоспособности, определения срока службы для оборудования по параметрам испытаний и эксплуатации аппарата. В качестве параметра, обеспечивающего заданный ресурс оборудования, принято отношение испытательного Р к рабочему Рр давлению Ри/Рр- В основу расчета положен следующий консервативный подход, обеспечивающий определенный запас прочности. Полагается, что в элементах оборудования имеются трещины, размеры которых изменяются в широком диапазоне от размеров, соответствующих разрешающей способности средств диагностики, до критических, зависящих от параметров испытаний и эксплуатации. При этом за расчетные параметры при оценке ресурса взяты критические размеры трещин, в частности, критическая глубина продольной не-  [c.330]


Работоспособность оборудования (трубопроводы, сосуды, аппараты и др.) зависит от качества проектирования, изготовления и эксплуатации. Качество проектирования, в основном, зависит от метода расчета на прочность и долговечность, определяется совершенством оценки напряженного состояния металла, степенью обоснованности критериев наступления предельного состояния, запасов прочности и др. В области оценки напряженного состояния конструктивных элементов аппарата к настоящему времени достигнуты несомненные успехи. Достижения в области вычислительной техники позволяют решать практически любые задачи определения напряженного состояния элементов оборудования. Достаточно обоснованы критерии и коэффициенты запасов прочности. Тем не менее, существующие методы расчета на прочность и остаточного ресурса тр>ебуют существенного дополнения. Они должны базироваться на временных факторах (коррозия, цикличность нагружения, ползучесть и др.) повреждаемости и фактических данных о состоянии металла (физико-механические свойства, дефектность и др.).  [c.356]

На первом этапе производится расчет на прочность по существующим нормативным материалам (ГОСТы, СНИ-Пы, РД и др.) с использованием фактических механических свойств, найденных в результате испытаний образцов, вырезанных из элементов оборудования, или косвенными методами (например, по изменению твердости или химическому составу и др.). Далее производится оценка остаточного ресурса по фактическим или априорным (если недостаточно диагностической информации) данным о дефектности, например, по разрешающей способности методов и средств неразрушающего контроля с учетом предыстории нагружения, а также характеристикам допускаемых технологических и конструктивных концентраторов напряжений. При такой оценке ресурса необходимо более полно учитывать реальные условия эксплуатации и использовать наиболее жесткие критерии разрушения, дающие консерватив-  [c.362]

Предельное состояние бездефектного элемента оборудования определяется на основании анализа устойчивости процесса пластической деформации при его нагружении. При этом для нефтеаппаратурных сталей зависимость между истинными нгшряжениями Ti и деформации Sj аппроксимируется степенной функцией следующего вида  [c.375]

Значения дИ Sinp для наиболее характерных случаев длительного статического нагружения конструктивных элементов оборудования при упругих (Oj < а ) и упругопластических ( i > dr) деформациях приведены в табл. 6.3.  [c.380]

КОНТРОЛЬ может быть допусковый, количественный и информационный. При допусковом контроле измеряемая величина сравнивается с допусками,и система дает ответ на вопрос, годен или нет данный элемент оборудования. При количественном контроле задается отклонение от допуска, а при информационном - также и рекомендации по поиску неисправностей.  [c.22]

Одним из лучших образцов зарубежной голо1 рафи-ческой импульсной техники, предназначенной для исследования нестационарных и быстропротекающих процессов, является установка РНК-1 фирмы Ротенкольбер Холо-Систем , которая, в частности, предназначена для анализа вибрации. элементов оборудования и деталей машин.  [c.75]

Никелевые покрытия и плакирующие сплавы на основе никеля используют в зарубежной практике для защиты от коррозии элементов оборудования глубоких нефтяных скважин (труб, вентилей). В работе [48] приведены результаты испытания труб, изготовленных из стали марки AISI 4130 с плакировкой никелевым сплавом 625, полученных методом горячего изостатического прессования. Толщина плакирующего слоя биметалла составляла 29 и 4 мкм. Испытания включали анализ изменения механических свойств материалов после вьщержки в хлорсодержащей среде в присутствии сероводорода, оценку стойкости их к коррозионному растрескиванию и питтинговой коррозии. Результаты лабораторных и промышленных испытаний показали высокие эксплуатационные свойства биметалла при использовании в качестве конструкционного материала для оборудования высокоагрессивных сероводородсодержащих глубоких скважин.  [c.96]

При правильном выборе формы элементов необходимо сойлюдать и рациональное их взаимное расположение. Неравномерное обтекание элементов оборудования электролитом, резкое изменение скорости его движения, появление тупиков и застойных зон может вызвать не только кавитацию, но также появление концентрационных элементов. Это связано с изменением потенциала в отдельных зонах, что способствует дифференциации поверхности в электрохимическом отношении.  [c.196]

Система базирования элементов оборудования. Одним из важных понятий в проектировании технологий является понятие системы базирования элементов оборудования. В системе EU LID3 это понятие ассоциируется с понятием trihedral. Системы базирования отвечают за взаимное расположение всех элементов оборудования станка, инструмента, инструментальной оснастки, технологической оснастки (приспособления) и детали в процессе обработки. Система базирования элемента создается путем определения положений начала координат и направления осей X, Y, Z. При этом на экране монитора указываются только оси Z и X. Ось Y не отображается, так как ее положение можно вычислить по правилу правой руки. В процессе описания того или иного элемента оборудования технолог самостоятельно определяет положение системы базирования. Назначение ее для того или иного элемента оборудования будем называть определением данного элемента. На всех приведенных далее рисунках в системах базирования ось Z будет изображаться сплошной линией, ось X - пунктирной. Система базирования существует как самостоятельный объект, имена этим объектам технолог назначает произвольно.  [c.85]

Базу данных технологического оборудования, имеющегося на предприятии, следует создать до начала работы с подсистемой технологической подготовки производства. Если геометрические модели станка и инструмента не были построены заранее, в процессе создания макетов оборудования автоматически будет создано точное их представление, достаточное для контроля обработки. Геометрические модели оригинальных элементов оборудования предприятия повьппают качество технологического процесса и контроля управляющих программ. ,  [c.110]

Кинематическая схема токарного станка. Кинематика токарного станка определяет положение плоскости обработки, упоров, револьверной головки и возможность С-координатной обработки. Для создания кинематической схемы станка необходимб иметь ранее построенные и сохраненные в базе данных все элементы оборудования. Напомним, что они обеспечат более точный контроль.  [c.112]

Легкость, жесткость, прочность и формуемость стеклопластиков обусловили их использование для изготовления элементов оборудования ванных комнат, например ванн и душевых кабин. При изготовлении ванн поверхности окружаюпгих стен часто формуются заодно с ванной, что позволяет избежать щелей и соединительных узлов. Целесообразно формовать цельные ванные комнаты, включая пол, стены и потолок из армированной стекловолокнами полиэфирной смолы. Их поверхности покрывают тонким неармированным слоем полиэфирной смолы либо листовым термопластом. Такие поверхности обладают меньшей твердостью и стойкостью против воздействия острых предметов, чем фарфоровая эмаль, но их проще восстанавливать.  [c.291]


Смотреть страницы где упоминается термин Элементы оборудования : [c.280]    [c.362]    [c.364]    [c.404]    [c.178]    [c.146]    [c.15]    [c.177]    [c.272]   
Смотреть главы в:

Транспортирующие машины Изд 3  -> Элементы оборудования



ПОИСК





© 2025 Mash-xxl.info Реклама на сайте